R32 SINGLE ZONE MULTI-POSITION AIR HANDLING UNIT WITH LGRED° ENGINEERING MANUAL #### PROPRIETARY DATA NOTICE This document, as well as all reports, illustrations, data, information, and other materials are the property of LG Electronics U.S.A., Inc., and are disclosed by LG Electronics U.S.A., Inc. only in confidence. This document is for design purposes only. A summary list of safety precautions is on page 6. For more technical materials such as submittals, catalogs, installation, owner's, and service manuals, visit www.lghvac.com. Proper sizing and installation of equipment is critical to achieve optimal performance. Split system air conditioners and heat pumps (excluding ductless systems) must be matched with appropriate coil components to meet ENERGY STAR® criteria. Ask your contractor for details or visit www.energystar.gov. (ENERGY STAR and the ENERGY STAR mark are registered trademarks owned by the U.S. Environmental Protection Agency.) For continual product development, LG Electronics U.S.A., Inc., reserves the right to change specifications without notice. © LG Electronics U.S.A., Inc. # LG AIR CONDITIONER TECHNICAL SOLUTION (LATS) #### LG Air Conditioner Technical Solution (LATS) Software A properly designed and installed refrigerant piping system is critical to the optimal performance of LG air-conditioning systems. To assist engineers, LG offers, free of charge, LG Air Conditioner Technical Solution (LATS) software—a total design solution for LG air conditioning systems. Contact your LG Rep for the best software program for your application. #### **NOTICE** To reduce the risk of designing an improper applied system or one that will not operate correctly, LG requires that LATS software be used on all projects. Figure 1: Example of a LATS Tree Diagram. #### **Formats** LATS is available to LG customers in two user interfaces: LATS HVAC and LATS Revit. Both LATS formats are available through www.myLGHVAC.com, or contact an LG Sales Representative. **LATS HVAC** is a Windows®-based application that aids engineers in designing LG Variable Refrigerant Flow (VRF), Multi F / Multi F MAX, Single-Zone, DOAS, and Energy Recovery Ventilator (ERV) systems. *Windows® is a registered mark of Microsoft® Corporation. LATS Revit integrates the LG LATS program with Revit® software**. It permits engineers to layout and validate LG VRF, Multi F / Multi F MAX, Single-Zone, and DOAS directly into Revit drawings. **Revit® is a registered mark of Autodesk, Inc. #### **Features** All LG product design criteria have been loaded into the program, making LATS simple to use: double click or drag and drop the component choices. Build systems in Tree Mode where the refrigerant system can be viewed. Switch to a Schematic diagram to see the electrical and communications wiring. LATS software permits the user to input region data, indoor and outdoor design temperatures, modify humidity default values, zoning, specify type and size of outdoor units and indoor units, and input air flow and external static pressure (ESP) for ducted indoor units. The program can also: - Import building loads from a separate Excel file. - · Present options for outdoor unit auto selection. - Automatically calculate component capacity based on design conditions for the chosen region. - Verify if the height differences between the various system components are within system limits. - Provide the correct size of each refrigerant piping segment and LG Y-Branches and Headers. - Adjust overall piping system length when elbows are added. - Check for component piping limitations and flag if any parameters are broken. - Factor operation and capacity for defrost operation. - Calculate refrigerant charge, noting any additional trim charge. - · Suggest accessories for indoor units and outdoor units. - Run system simulation. #### NOTICE Features depend on which LATS program is being used, and the type of system being designed. Contact your LG representative for the best software program for your application. #### **NOTICE** Any field changes, such as re-routing, shortening or lengthening a pipe segment, adding or eliminating elbows and/or fittings, re-sizing, adding, or eliminating indoor units, changing the mounting height, or moving the location of a device or fitting during installation must be done with caution and ALWAYS VERIFIED in LATS SOFTWARE BEFORE supplies are purchased or installed. Doing so will lead to a more profitable installation, reduce the potential for rework, and will reduce the potential for multiple visits to the job site to complete the system set up. # LG AIR CONDITIONER TECHNICAL SOLUTION (LATS) #### **LATS Generates a Complete Project Report** LATS software also generates a report containing project design parameters, cooling and heating design data, system component performance, and capacity data. The report includes system combination ratio and refrigerant charge calculations; and provides detailed bill of material, including outdoor units, indoor units, control devices, accessories, refrigerant pipe sizes segregated by building, by system, by pipe size, and by pipe segments. LATS can generate an Excel GERP report that can be imported into the LG SOPS pricing and ordering system. #### **Proper Design to Install Procedure** LG encourages a two report design-to-install-procedure. After the design engineer determines building / zone loads and other details, the engineer opens the LATS program and inputs the project's information. When the design is complete, the "Auto Piping" and "System Check" functions must be used to verify piping sizes, limitations, and if any design errors are present. If errors are found, engineers must adjust the design, and run Auto Piping and System Check again. When the design passes the checks, then the engineer prints out a project "Shop Drawing" (LATS Tree Diagram) and provides it to the installing contractor. The contractor must follow the LATS Tree Diagram when building the piping system, but oftentimes the design changes on the building site: - Architect has changed location and/or purpose of room(s). - · Outdoor unit cannot be placed where originally intended. - · Structural elements prevent routing the piping as planned. - · Air conditioning system conflicts with other building systems (plumbing, gas lines, etc.). The contractor must mark any deviation from the design on the Shop Drawing, including as-built straight lines and elbows. This "Mark Up" drawing must be returned to the design engineer or Rep, who must input contractor changes into the LATS file. (Copy the original LATS software file, save and rename as a separate file, and modify all piping lengths by double-clicking on each length and editing information.) Like the shop drawing, the Auto Piping and System Check must also be run on this new "As Built" drawing. The design engineer or Rep must then provide the final As Built file to the contractor. The Mark Up version must be compared to the As Built version for: - Differences in pipe diameter(s). If incorrect diameters have been installed, the piping must be changed out. If pipe diameters have changed, check if Y-Branches will also need to be changed. - Changes to outdoor unit and indoor unit capacities. Capacities changes will impact line length changes. - Additional refrigerant charge quantity ("Trim Charge"). Trim charge will change if piping lengths and diameters change. The As Built version must reflect installed piping lengths to ensure correct trim charge. All documents submitted by the contractor, as well as the Shop Drawing and the As Built Drawing files must be provided for commissioning purposes. Model and serial numbers for all system components must also be submitted. If the steps previously detailed are not followed, and all documents are not provided to the commissioning agent, the project runs the risk of not being commissioned and voiding any limited warranty LG offers on the equipment. #### **NOTICE** Any field changes, such as re-routing, shortening or lengthening a pipe segment, adding or eliminating elbows and/or fittings, re-sizing, adding, or eliminating indoor units, changing the mounting height, or moving the location of a device or fitting during installation must be done with caution and ALWAYS VERIFIED in LATS SOFTWARE BEFORE supplies are purchased or installed. Doing so will lead to a more profitable installation, reduce the potential for rework, and will reduce the potential for multiple visits to the job site to complete the system commissioning. # **TABLE OF CONTENTS** | LG Air Conditioner Technical Solution | | |---|-------| | Table of Symbols | 5 | | Product Data | 7-39 | | Nomenclature | 8 | | Pairing Table | 9 | | Mechanical Specifications | | | General Data | | | Electrical Data | | | Functions, Controls, Options | | | Accessories | | | Outdoor Unit Dimensions | | | Outdoor Unit Center of Gravity / Corner Weight | | | Indoor Unit Dimensions | | | External Static Pressure and Air Flow | | | Outdoor Unit Acoustic Data | | | Indoor Unit Acoustic Data | | | Performance Data | | | Cooling Capacity | | | Maximum Cooling Capacity | | | Heating Capacity | 55-61 | | Maximum Heating Capacity | | | Correction Factors | | | Check Selection | 70 | | Application Guidelines | 71-82 | | Indoor Unit Placement / Clearance Considerations | | | Outdoor Unit Placement / Clearance Considerations | | | Installing Outdoor Units Indoors | | | Refrigerant Piping Design | 83-95 | | Refrigerant Flow Diagrams | | | Connection Limitations and System Layout | | | Additional Refrigerant Charge | | | Refrigerant Piping System Engineering | | | Electrical | | | General Guidelines | | | Wiring Diagrams | | | Power Supply / Power Wiring | | | Communication / Connection Cable | | | Controllers | | | Limited Warranty | 109 | | A2L | Indicates that this appliance uses a flammable refrigerant. If the refrigerant leaks and is exposed to an external
ignition source, there is a risk of fire. | |------------------|--| | ▲ DANGER | Indicates a hazardous situation that, if not avoided, WILL RESULT IN DEATH OR SERIOUS INJURY.1 | | A WARNING | Indicates a hazardous situation that, if not avoided, COULD RESULT IN DEATH OR SERIOUS INJURY.1 | | ▲ CAUTION | Indicates a hazardous situation that, if not avoided, COULD RESULT IN MINOR OR MODERATE INJURY.1 | | NOTICE | Indicates information considered important, but not hazard-related; indicates situations that may result in equipment or property damage accidents. ¹ | | | This symbol indicates an action that should not be performed. | ¹Signal words, symbols, and definitions taken from American National Standards Institute (ANSI) Z535.6. See https://www.ansi.org/ for more information. # R32 Refrigerant LG Electronic split system heating and air conditioning (HVAC) products now contain R32 refrigerant. While R32 refrigerant is slightly flammable, it has a higher efficiency, a lower Global Warming Potential (GWP) value, and is more environmentally friendly than R410A. R32 Ozone Depletion Potential (ODP) Value: 0. R32 Global Warming Potential (GWP) Value: 675. The amount of refrigerant depends on outdoor unit to indoor unit configuration. All refrigerant piping system components (copper piping, joints, and other fittings) must be selected and installed to conform with Refrigeration Safety Regulation standards. Use LG Air Conditioner Technical Solution (LATS) Software to verify the refrigerant amount needed for each installation. #### **A** WARNING - This HVAC system contains fluorinated greenhouse gases in the form of R32 refrigerant. Do not leak refrigerant gas into the atmosphere. - Only use R32 as the refrigerant in these HVAC systems. If other substances are added, it may cause an explosion. - R32 refrigerant is slightly flammable. When handled properly, it does not leak. If the refrigerant leaks in the installation area and comes in contact with a flame, it may generate a fire and / or harmful gas. - If a leak occurs, immediately turn off any combustion devices, ventilate the installation area, and contact the dealer / contractor where the HVAC unit was purchased. On not operate the unit until the refrigerant leaked is repaired. #### **A**CAUTION - Piping wall thickness must comply with all applicable local, state, and federal regulations for the design pressures listed by the manufacturer. Unapproved piping must not be used. - To prevent piping from softening, \(\sigma \) do not heat the piping more than necessary. # PRODUCT DATA Nomenclature on page 8 Pairing Table on Page 9 **Mechanical Specifications on page 10** **General Data on page 13** **Electrical Data on page 19** Functions, Controls, and Options on page 20 Accessories on page 21 **Outdoor Unit Dimensions on page 25** Outdoor Unit Center of Gravity / Corner Weight on page 27 **Indoor Unit Dimensions on page 28** **External Static Pressure and Air Flow on page 30** **Acoustic Data on page 33** # **UNIT NOMENCLATURE** The following table shows the available outdoor and indoor unit. Table 1: R32 Single Zone Multi-Position AHU with LGRED° System Pairing Table #### MECHANICAL SPECIFICATIONS #### General #### **System** Single zone Multi-Position Air Handling Unit (AHU) with LGRED° system comprises of a single frame outdoor unit connected to a single indoor unit with a single refrigerant circuit. The system can operate in either cooling or heating mode. The system is capable of changing mode within a maximum time of three (3) minutes to ensure indoor temperature can be properly maintained. LG components are manufactured in a facility registered to ISO 9001 and ISO 14001, which is a set of standards applying to environmental protection set by the International organization for Standardization (ISO). The system components comply with CSA Standard for Safety and bear the CSA label. Wiring in these units are in accordance with the National Electrical Code (NEC). Single zone Multi-Position AHU with LGRED° systems have published performance ratings certified by AHRI (Air-Conditioning, Heating, and Refrigeration Institute) and are listed in the AHRI Standard 210 / 240 certified product directory. #### **Outdoor Unit** The outdoor units have sound levels not exceeding 56 dB(A) (Cooling Mode) tested in an anechoic chamber under ISO Standard 3745. #### **Indoor Unit** The indoor units have sound ratings no higher than 42 dB(A) as tested per ISO Standard 3745. #### Temperature Ranges #### **Operating Ranges for Outdoor Units** • 5°F to +118°F (DB) for cooling Cooling range can be extended from 5°F down to -4°F using the Low Ambient Wind Baffle Kit (sold separately) • -13°F to +64.4°F (WB) for heating. #### **Operating Ranges for Indoor Units** - Operating ranges for indoor units of 57°F to 77°F (WB) for cooling; 59°F to 81°F (DB) for heating. - Indoor unit temperature setting range of 65°F to 86°F (DB) for cooling; 61°F to 86°F (DB) for heating. #### Casing #### **Outdoor Unit** The outdoor condensing unit case is constructed from pre-coated metal (PCM) that has been tested in accordance with ASTM B-117 salt spray procedure for a minimum of 1,000 hours. Case has a removable panel to allow access to major internal components, and legs to secure the unit during installation. #### **Indoor Unit** The unit is designed to operate in vertical up flow, down flow (requires conversion kit sold separately), horizontal left, and horizontal right configurations. Supply air exits from the top and return air enters from the bottom for a vertical up flow configuration. Return air opening is from the top for the vertical down flow configuration. Return air opening is from right end or left end when in horizontal configuration. The airflow circulation of the supply air and return air is reversed in a vertical down flow configuration. Return air plenum sub-base is to be field provided. Supply air opening has a male flange for duct connection. The unit case is made of 22-gauge coated metal and the external surfaces are finished with a high gloss baked enamel finish. Finish color is Black STS. Cold surfaces are galvanized steel. The cold surfaces of the case are internally insulated with ½ inch foil faced, polystyrene foamed insulation. The inside surface of the fan assembly door access panel is treated with ½ inch polystyrene foamed insulation, encapsulated on both sides, and sealed along the edges with a reinforced foil-faced covering to prevent deterioration caused by panel removal. All access panels are provided with gasket seals to minimize air leakage. The unit case is designed to accept an internal, optional, LG electric strip heater. The unit bears the CSA label. Unit breaker, fuses, and / or disconnect are provided by others. #### Fan Assembly and Control #### **Outdoor Unit** The 12,000 Btu/h (KUSXA121A), 18,0000 Btu/h (KUSXA181A), and 24,000 Btu/h (KUSXA241A), outdoor units include one direct drive, variable speed axial / propeller type fan with a horizontal air discharge. 30,000 Btu/h (KUSXA301A), 36,000 Btu/h (KUSXA361A), 42,000 Btu/h (KUSXA422A) and 48,000 (KUSXA482A) Btu/h outdoor units include two fans. #### **Indoor Unit** The indoor unit has an integral fan assembly consisting of a galvanized steel housing and a forward-curved fan wheel. The direct drive fan/motor assembly is mounted on rubber grommets isolating the rotating assembly from the fan housing. The NA chassis (12,000 Btu/h, 18,000 Btu/h and 24,000 Btu/h) is equipped with Sirocco fan with Brushless Digitally- Controlled design (BLDC) fan motor to deliver constant CFM for $0.1 \sim 1.0$ (in.wg) external static pressure. The NB chassis (30,000 Btu/h, 36,000 Btu/h, 42,000 Btu/h and 48,000 Btu/h) is equipped with Sirocco fan with Brushless Digitally- Controlled design (BLDC) fan motor to deliver airflow with minimum ESP of 0.1 in.wg to a maximum ESP of 1.0 in.wg for different setting values. Please refer to ESP and Airflow table separately provided on page 32. The fan/motor assembly is mounted on vibration attenuating rubber grommets. The fan impeller is statically and dynamically balanced. Fan speed of NB chassis is controlled using a microprocessor-based direct digital control algorithm that provides a minimum of a high fan speed in cooling thermal ON and low fan speed in cooling thermal OFF, high fan speed in heating thermal ON and fan off in heating thermal OFF. ### **LGRED°** ### **MECHANICAL SPECIFICATIONS** The fan speeds can be field adjusted between low, medium, and high speeds. DIP switch settings will allow the fan to run constantly during defrost or oil return modes. No setting is required for NA chassis; fan speed changes automatically to maintain programmed air flow settings as the static pressure changes. Each setting for NB chassis can be field adjusted from the factory setting (RPM/ESP). Being a Constant Air Volume (CAV) unit, the NA (12k, 18k, 24k) chassis does not require any field adjustment to change the ESP settings. The NB (30k, 36k, 42k, and 48k) chassis comes with factory setting that provides delivery of air volume against an external static pressure of up to 1.0" in-wg. #### Air Filter The unit comes with a filter rack sized to hold a field-provided 16" x 20" x 1" (NA frame) or 20" x 20" x 1" (NB frame) filter cartridge. The filter rack is equipped with guides that keep the filter centered in the rack. Filter service access is from the front of the unit without removing the coil or fan area access panels. Filter access door is provided with quick release catch to add or remove air filter. # Optional Auxiliary Electric Heat Module(s) LG optional electric heat modules are designed for field installation in the reheat position. The electric heat module is provided with a circuit breaker, heating elements,
contactors, relays, high temperature safety switch, and interconnecting control wiring harness with a quick connect plug for easy connection to the unit control board. Auxiliary heat modules are available in nominal capacities of 3, 5, 8, 10, 15, and 20 kW. The NA chassis is compatible with 3,5,8,10 kW auxiliary electric heater and the NB chassis is compatible with 3,5,8,10,15,20 kW auxiliary electric heater. Heating elements are powered from a field provided separate power source. 3kW through 10 kW modules are powered from a single power wire. The 15kW and 20 kW modules are powered from two power wires. The optional electric heater when used with the provided simple controller or a 3rd party thermostat (via dry contact connection), will have automatic heating operation based on the internal logic. If manual heater operation is intended, an LG Programmable controller is required. #### **Microprocessor Control** The indoor unit is provided with an integrated control panel with built-in RS-485 connection to communicate with the outdoor unit. All unit operation parameters are stored in non-volatile memory resident on the unit microprocessor. The microprocessor controls space temperature through using the value provided by temperature sensors within the indoor unit. A field-supplied communication cable must be installed to connect the indoor unit(s) to the outdoor unit. #### **Refrigerant System** The system is designed for use with R32 refrigerant, and consists of a single refrigeration circuit. The refrigeration circuit is pressure tested at the factory and shipped with a holding charge of helium gas. The indoor unit consists of a heat exchanger, an EEV with strainers and a Sirocco fan The outdoor unit is provided with factory installed components, including a refrigerant strainer, accumulator, four-way reversing valve, electronic expansion valve (EEV), high and low side charging ports, service valves, and interconnecting piping. All refrigerant lines from the outdoor unit to the indoor unit are field-installed and must be insulated separately. KUSXA422A, KUSXA482A units include a sub cooled heat exchanger, vapor injection and vapor bypass circuit. #### Compressors The 12,000 - 48,000 Btu/h outdoor unit is equipped with one hermetically sealed, digitally controlled, inverter-driven R1 scroll compressor to modulate capacity (modulation in 1 Hz increments). Teflon coated bearings, overcurrent protection, and vibration isolation are integrated with the compressor. #### Frequency ranges for 12,000 ~ 48,000 Btu/h outdoor units - 12k, 18k, 24k Btu/h = 10 to 120 Hz Cooling; 10 to 135 Hz Heating - 30k, 36k, 42k, 48K Btu/h = 15 to 110 Hz Cooling; 15 to 120 Hz Heating #### Controls Indoor and outdoor units are factory wired with necessary electrical control components, printed circuit boards, thermistors, sensors, terminal blocks, and lugs for power wiring. Factory installed microprocessor controls in the outdoor unit and indoor unit perform functions to efficiently operate the single zone system, communicating via a 14 AWG four-conductor, stranded, shielded or unshielded (if shielded, must be grounded to the chassis at the outdoor unit only) power/transmission cable (and must comply with applicable local and national codes. Microprocessor-based algorithms provide component protection, soft-start capability, refrigeration system pressure, temperature, defrost, and ambient control. System can be operated through an optional handheld wireless controller and optional infrared receiver. LG wired controller can be used with the indoor unit (sold separately). Power cable from the outdoor unit to the indoor unit must be a minimum of 14 AWG, three (3) conductor and communication cable from the outdoor unit to the indoor unit must be a minimum of 18 AWG, two (2) conductor, shielded or unshielded (if shielded, must be grounded to chassis at ODU only) and must comply with applicable local and national codes. The indoor unit has a optional dry contact for central controls and for a field supplied 3rd party thermostat. An optional Wi-Fi module is available as an additional accessory for use with LG's ThinQ app on a smart device. #### MECHANICAL SPECIFICATIONS #### **Refrigerant Leak Detector** The single zone Multi-Position Air Handling Unit with LGRED° has a built-in leak detector sensor to detect any refrigerant leaks. #### **Shut-off Valve** LG single port shutoff valve (PRHPZ010A) is available as an accessory for the Multi-Position Air Handling Unit with LGRED°. #### Condensate The unit is designed for gravity draining of condensate. #### **Condensate Drain Pan** The condensate drain pan is constructed of HIPS (high impact polystyrene resin). #### Coil The indoor unit coil is constructed with grooved design copper tubes with slit coil fins. For 12k units, there are 2 rows. For 18k \sim 48k units, there are 3 rows. There are 18 fins per inch for all indoor units. Heat pump outdoor unit coils are made of nonferrous louvered aluminum fins protected with an integral coil guard. The coil for each outdoor unit has a minimum of 14 fins per inch (FPI); heat exchanger has two rows (12,000 \sim 36,000 Btu/h units) and three rows (42,000 Btu/h and 48,000 Btu/h units). The coil fins have a factory applied corrosion resistant GoldFin[™] material with hydrophilic coating tested in accordance with ASTM B-117 salt spray test procedure for a minimum of 1,000 hours. Coils are factory tested to a maximum allowable pressure of 626 psig. #### **Controls Features** - Inverter (Variable speed fan) - · Child lock function - · Auto changeover - · Auto restart operation - · Dehumidifying function - · Two thermistor control - Group control - External static pressure control (42k and 48k units) - · Self-diagnostics function #### **Vertical Down Flow Configuration** NA and NB frames come factory configured for vertical upflow. Downflow configuration requires a conversion kit sold separately (model number: PNDFA0 for NA and NB frames). The kit contains support brackets for the evaporator coil/drain pan subassembly, addition screws, and a replace front panel to accommodate the coil and drain connections for downflow configuration. Figure 2: Single Zone Multi-Position AHU with LGRED° System (KSSLA241A) # **LGRED°** ### **GENERAL DATA** Table 2: R32 Single Zone Multi-Position Air Handling Unit with LGRED° System Specifications. | System (Model) (Indoo | r Unit / Outdoor Unit) | KSSLA121A
(KNSLB121A / KUSXA121A) | KSSLA181A
(KNSLA181A / KUSXA181A) | KSSLA241A
(KNSLA241A / KUSXA241A) | | | |---|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--| | Cooling Capacity (Min/R | ated/Max) (Btu/h) | 5,000 ~ 12,500 ~ 17,500 | 7,200 ~ 18,000 ~ 24,800 | 9,600 ~ 24,000 ~ 30,000 | | | | Cooling Power Input ¹ (M | in/Rated/Max) (kW) | 0.31 ~ 0.94 ~ 1.95 | 0.45 ~ 1.33 ~ 2.76 | 0.55 ~ 1.92 ~ 3.00 | | | | EER2 (@95°F) | | 13.30 | 13.50 | 12.50 | | | | SEER2 | | 17.00 | 17.50 | 17.50 | | | | Heating Capacity (Min/R | ated/Max) (Btu/h) | 6,000 ~ 15,000 ~ 19,500 | 8,000 ~ 20,000 ~ 27,000 | 10,800 ~ 27,000 ~ 36,000 | | | | Heating Power Input ¹ (M | in/Rated/Max) (kW) | 0.36 ~ 1.11 ~ 2.38 | 0.50 ~ 1.54 ~ 3.30 | 0.65 ~ 2.08 ~ 4.40 | | | | COP (@47°F) | | 3.96 | 3.81 | 3.79 | | | | HSPF2 | | 9.80 | 10.00 | 10.00 | | | | Maximum Heating Capac | ity (Btu/h) | | | | | | | Outdoor 17°F (WB) / Ind | loor 70°F (DB) | 16,300 | 26,000 | 28,000 | | | | Outdoor 5°F (WB) / Indo | or 70°F (DB) | 15,000 | 25,000 | 25,000 | | | | Outdoor -4 °F (WB) / Inc | loor 70°F (DB) | 13,000 | 21,000 | 22,000 | | | | Outdoor -13 °F (WB) / Ir | idoor 70°F (DB) | 11,000 | 17,000 | 19,000 | | | | ENERGY STAR / Cold C | Climate | Yes / Yes | Yes / Yes | Yes / yes | | | | Power Supply (To Outdo | or Unit; V / Hz / Ø) | | 208-230 / 60 / 1 | | | | | Power Supply Wiring (O
(No. x AWG) | utdoor Unit) ² | 3 x 12 | 3 x 12 | 3 x 12 | | | | Power Wiring / Commun
(ODU to IDU) (No. x AW | ication Wiring ²
/G) | 3 x 14 / 2 x 18 | 3 x 14 / 2 x 18 3 x 14 / 2 x 18 | | | | | Indoor Unit Data | | | | | | | | Operating Dange | Cooling (°F WB) | 57 to 77 | | | | | | Operating Range | Heating (°F DB) | 59 to 81 | | | | | | Temperature Setting | Cooling (°F) | 65 to 86 | | | | | | Range | Heating (°F) | 61 to 86 | | | | | | Sound Pressure ³ dB(A) | Cooling (H/M/L) | 34 / 31 / 28 | 35 / 32 / 29 | 36 / 33 / 29 | | | | | Heating (H/M/L) | 34 / 31 / 28 | 35 / 32 / 29 | 36 / 33 / 29 | | | | Net Dimensions (W x H | x D) (in.) | 18 x 48-21/32 x 21-3/8 | 18 x 48-21/32 x 21-3/8 | 18 x 48-21/32 x 21-3/8 | | | | Shipping Dimensions (W | - · · · · | 21-5/32 x 52-3/8 x 26-27/32 | 21-5/32 x 52-3/8 x 26-27/32 | 21-5/32 x 52-3/8 x 26-27/32 | | | | Indoor Unit Net / Shippin | g Weight (lbs.) | 116 / 129 | 122 / 134 | 122 / 134 | | | | Fan Type x Qty. | <u> </u> | Sirocco x 1 | Sirocco x 1 | Sirocco x 1 | | | | Fan Motor Output (W) | | 250 | 250 | 400 | | | | Fan Motor / Drive | | | rushless Digitally Controlled / Dir | , | | | | Airdian Date (OCAA) | Cooling (H/M/L) | 500 / 460 / 420 | 600 / 510 / 440 | 800 / 700 / 580 | | | | Airflow Rate (CFM) | Heating (H/M/L) | 500 / 460 / 420 | 600 / 510 / 440 | 800 / 700 / 580 | | | | Dehumidification Rate (p | | 1.83 | 2.75 | 4.23 | | | | ESP Range (Min~Max) (| · · · · · · · · · · · · · · · · · · · | 0.1~1.0 | 0.1~1.0 | 0.1~1.0 | | | | Fan Setting Value | | Constant Flow | | | | | This data is rated $\stackrel{.}{0}$ ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet
bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). ¹Power Input is rated at high speed. ²All power supply wiring to the outdoor unit is field supplied, solid or stranded. The power wiring and the communication wiring from the outdoor unit to the indoor unit is field supplied and must be stranded, shielded or unshielded (if shielded, it must be grounded to the chassis of the outdoor unit only). All wiring must comply with applicable local and national codes. ³Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. Table 3: R32 Single Zone Multi-Position AHU with LGRED° System Specifications, continued. | System (Model) (Inc | door Unit / Outdoor Unit) | KSSLA121A
(KNSLB121A / KUSXA121A) | KSSLA181A
(KNSLA181A / KUSXA181A) | KSSLA241A
(KNSLA241A / KUSXA241A) | | | | | |----------------------------------|---------------------------|---|---|--------------------------------------|--|--|--|--| | Outdoor Unit Data | | | | | | | | | | Operating Range ¹ | Cooling (°F DB) | 5 to 118 | | | | | | | | Operating Range | Heating (°F WB) | | -13 to +64 | | | | | | | Sound Pressure ² dE | B(A) (Cool/Heat) | 51 / 52 | 51 / 52 | 51 / 52 | | | | | | Maximum External (in.wg) | Static Pressure (ESP) | 0.04 | 0.04 | 0.04 | | | | | | Net Dimensions (W | x H x D) (in.) | 37-13/32 x 32-27/32 x 13 | 37-13/32 x 32-27/32 x 13 | 37-13/32 x 32-27/32 x 13 | | | | | | Shipping Dimension | is (W x H x D) (in.) | 44-7/8 x 36-5/32 x 18-5/32 | 44-7/8 x 36-5/32 x 18-5/32 | 44-7/8 x 36-5/32 x 18-5/32 | | | | | | Outdoor Unit Exterio | or Color Codes | Wa | rm Gray RAL 7044 Munsell 2.5Y | 7.5/1 | | | | | | Net / Shipping Weig | ht (lbs.) | 141.8 / 160.1 | 141.8 / 160.1 | 141.8 / 160.1 | | | | | | Fan Type x Qty. | | Axial x 1 | Axial x 1 | Axial x 1 | | | | | | Fan Motor Output (\ | N) x Qty. | 124 x 1 | 124 x 1 | 124 x 1 | | | | | | Fan Motor / Drive | | Е | Brushless Digitally Controlled / Direct | | | | | | | Airflow Rate Max. (0 | CFM) | 2,048 2,048 | | 2,048 | | | | | | Compressor (Type > | Qty.) | R1 Scroll x 1 | R1 Scroll x 1 | | | | | | | Heat Exchanger | | | | | | | | | | Material and Fin Co | ating | Copper Tube / Aluminum Fin (Gold Fin™ Coating on Outdoor Unit Coil;
N/A on Indoor Unit Coil) | | | | | | | | Rows / Columns / F | in per inch (ODU) | 2R x 38C x 14FPI | 2R x 38C x 14FPI | 2R x 38C x 14FPI | | | | | | Refrigerant | | | | | | | | | | Type ³ / Control | | R32 / EEV | | | | | | | | Pre-Charge (oz.) | | 67 | 67 | 67 | | | | | | Additional Charge (| oz/ft) | 0.38 | 0.38 | 0.38 | | | | | | Piping | | | | | | | | | | Liquid (in.) | Connection / Pipe Size | 1/4 Flare / 1/4 Flare | 3/8 Flare / 3/8 Flare | 3/8 Flare / 3/8 Flare | | | | | | Vapor (in.) | Connection / Pipe Size | 3/8 Flare / 3/8 Flare | 5/8 Flare / 5/8 Flare | 5/8 Flare / 5/8 Flare | | | | | | Condensation Line | (OD, ID, in.) | 1-1/4 / 1 | 1-1/4 / 1 | 1-1/4 / 1 | | | | | | Pipe Length ⁴ (Min./S | Standard/Max.) (ft) | 16.4 / 164 | 16.4 / 164 | 16.4 / 164 | | | | | | Piping Length ⁴ (no a | add'l refrigerant, ft) | 24.6 | 24.6 | 24.6 | | | | | | Max Elevation Differ | rence (ft) | 98.4 | 98.4 | 98.4 | | | | | This data is rated $\hat{0}$ ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. R32 Single Zone Multi-Position AHU with LGRED° Engineering Manual Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). ¹Optional Low Ambient Wind Baffle Kit allows operation down to -4°F in cooling mode. ²Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. ³Take appropriate actions at the end of HVAC equipment life to recover, recycle, reclaim or destroy R32 refrigerant according to applicable regulations (40 CFR Part 82, Subpart F) under section 608 of CAA. ⁴Piping lengths are equivalent. # **GENERAL DATA** Table 4: R32 Single Zone Multi-Position Air Handling Unit with LGRED° System Specifications. | System (Model) (Indo | or Unit / Outdoor | KSSLA301A
(KNSLA301A / KUSXA301A) | KSSLA361A | KSSLA421A | | | | |---|--|--------------------------------------|---|---|--|--|--| | Cooling Capacity (Min/R | Cooling Capacity (Min/Rated/Max) (Btu/h) | | (KNSLA361A / KUSXA361A)
14,000 ~ 33,000 ~ 44,000 | (KNSLB421A / KUSXA422A)
16,800 ~ 42,000 ~ 50,000 | | | | | Cooling Power Input ¹ (M | | 12,000 ~ 30,000 ~ 36,000 | | 1.19 ~ 3.36 ~ 5.32 | | | | | EER2 (@95°F) | min tate annually (triv) | 13.50 | 13.00 | 12.50 | | | | | SEER2 | | 18.20 | 18.20 | 19.00 | | | | | Heating Capacity (Min/R | lated/Max) (Btu/h) | 13,600 ~ 34,000 ~ 40,800 | 16,000 ~ 40,000 ~ 43,000 | 18,000 ~ 46,000 ~ 60,000 | | | | | Heating Power Input ¹ (M | | 0.78 ~ 2.49 ~ 3.90 | 0.96 ~ 3.09 ~ 4.10 | 1.34 ~ 3.64 ~ 5.80 | | | | | COP (@47°F) | | 4.01 | 3.79 | 3.70 | | | | | HSPF2 | | 9.80 | 9.60 | 9.80 | | | | | Maximum Heating Capac | ity (Btu/h) | | | | | | | | Outdoor 17°F (WB) / Inc | loor 70°F (DB) | 36,000 | 39,000 | 52,000 | | | | | Outdoor 5°F (WB) / Indo | or 70°F (DB) | 33,000 | 33,000 | 46,000 | | | | | Outdoor -4 °F (WB) / Inc | loor 70°F (DB) | 29,500 | 31,000 | 40,000 | | | | | Outdoor -13 °F (WB) / Ir | ndoor 70°F (DB) | 26,000 | 29,000 | 34,000 | | | | | ENERGY STAR / Cold C | Climate | Yes / Yes | Yes / Yes | Yes / yes | | | | | Power Supply (To Outdo | or Unit; V / Hz / Ø) | | 208-230 / 60 / 1 | | | | | | Power Supply Wiring (O (No. x AWG) | | 3 x 10 3 x 10 | | 3 x 10 | | | | | Power Wiring / Commun
(ODU to IDU) (No. x AW | ication Wiring ²
/G) | 3 x 14 / 2 x 18 3 x 14 / 2 x 18 | | 3 x 14 / 2 x 18 | | | | | Indoor Unit Data | | | | | | | | | Operating Range | Cooling (°F WB) | 57 to 77 | | | | | | | Operating Nange | Heating (°F DB) | 59 to 81 | | | | | | | Temperature Setting | Cooling (°F) | 65 to 86 | | | | | | | Range | Heating (°F) | | 61 to 86 | | | | | | Sound Pressure ³ dB(A) | Cooling (H/M/L) | 40 / 37 / 35 | 40 / 37 / 35 | 41 / 38 / 36 | | | | | | Heating (H/M/L) | 40 / 37 / 35 | 40 / 37 / 35 | 41 / 38 / 36 | | | | | Net Dimensions (W x H | x D) (in.) | 21 x 55-3/16 x 21-3/8 | 21 x 55-3/16 x 21-3/8 | 21 x 55-3/16 x 21-3/8 | | | | | Shipping Dimensions (W | / x H x D) (in.) | 24-9/32 x 58-29/32 x 26-15/16 | 57-3/32 x 16-27/32 x 30-7/16 | 57-3/32 x 16-27/32 x 30-7/16 | | | | | Indoor Unit Net / Shippin | ng Weight (lbs.) | 146 / 160 | 146 / 160 | 146 / 160 | | | | | Fan Type x Qty. | | Sirocco x 1 | Sirocco x 1 | Sirocco x 1 | | | | | Fan Motor Output (W) | | 400 | 400 | 400 | | | | | Fan Motor / Drive | | Br | ushless Digitally Controlled / Dire | ect | | | | | Airflow Rate (CFM) | Cooling (H/M/L) | 875 / 750 / 630 | 1,050 / 980 / 900 | 1,225 / 1,100 / 1,000 | | | | | ` ' | Heating (H/M/L) | 875 / 750 / 630 | 1,050 / 980 / 900 | 1,225 / 1,100 / 1,000 | | | | | Dehumidification Rate (p | | 5.6 | 6.9 | 7.9 | | | | | ESP Range (Min~Max) (| (in.wg) | 0.1~1.0 | 0.1~1.0 | 0.1~1.0 | | | | | Fan Setting Value | | Constant Flow | | | | | | EEV: Electronic Expansion Valve IDU: Indoor Unit ODU: Outdoor Unit This data is rated 0 ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). ¹Power Input is rated at high speed. All power supply wiring to the outdoor unit is field supplied, solid or stranded. The power wiring and the communication wiring from the outdoor unit to the indoor unit is field supplied and must be stranded, shielded or unshielded (if shielded, it must be grounded to the chassis of the outdoor unit only). All wiring must comply with applicable local and national codes. ³Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. Table 5: R32 Single Zone Multi-Position AHU with LGRED° System Specifications, continued. | System (Model) (Indoor Unit / Outdoor U | nit) KSSLA301A
(KNSLA301A / KUSXA301A) | KSSLA361A
(KNSLA361A / KUSXA361A) | KSSLA421A
(KNSLB421A / KUSXA422A) | | | | | |---|---|---|--------------------------------------|--|--|--|--| | Outdoor Unit Data | | | | | | | | | Operating Range ¹ Cooling (°F DB) | | 5 to 118 | | | | | | | Heating (°F WB) | | -13 to +64 | | | | | | | Sound Pressure ² dB(A) (Cool/Heat) | 52 / 54 | 52 / 54 | 54 / 56 | | | | | | Maximum External Static Pressure (ESP) (in.wg) | 0.04 | 0.04 | 0.04 | | | | | | Net Dimensions (W x H x D) (in.) | 37-13/32 x 54-11/32 x 13 | 37-13/32 x 54-11/32 x 13 | 37-13/32 x 54-11/32 x 13 | | | | | | Shipping Dimensions (W x H x D) (in.) | 45-5/32 x 57-19/32 x 18-5/32 | 45-5/32 x 57-19/32 x 18-5/32 | 45-5/32 x 57-19/32 x 18-5/32 | | | | | | Outdoor Unit Exterior Color Codes | Wa | arm Gray RAL 7044 Munsell 2.5Y | 7.5/1 | | | | | | Net / Shipping Weight (lbs.) | 190.2 / 214.3 | 190.2 / 214.3 | 213.4 / 232.4 | | | | | | Fan Type x Qty. | Axial x 2 | Axial x 2 | Axial x 2 | | | | | | Fan
Motor Output (W) x Qty. | 124 x 2 | 124 x 2 | 124 x 2 | | | | | | Fan Motor / Drive | E | Brushless Digitally Controlled / Direct | | | | | | | Airflow Rate Max. (CFM) | 1,942 x 2 | 1,942 x 2 | 1,942 x 2 | | | | | | Compressor (Type x Qty.) | R1 Scroll x 1 | R1 Scroll x 1 | R1 Scroll x 1 | | | | | | Heat Exchanger | | | | | | | | | Material and Fin Coating | Copper Tube / Alu | Copper Tube / Aluminum Fin (Gold Fin™ Coating on Outdoor Unit Coil;
N/A on Indoor Unit Coil) | | | | | | | Rows / Columns / Fin per inch (ODU) | 2R x 64C x 14FPI | 2R x 64C x 14FPI 2R x 64C x 14FPI | | | | | | | Refrigerant | • | | | | | | | | Type ³ / Control | | R32 / EEV | | | | | | | Pre-Charge (oz.) | 106 | 106 | 120 | | | | | | Additional Charge (oz/ft) | 0.43 | 0.43 | 0.43 | | | | | | Piping | • | • | | | | | | | Liquid (in.) Connection / Pipe S | size 3/8 Flare / 3/8 Flare | 3/8 Flare / 3/8 Flare | 3/8 Flare / 3/8 Flare | | | | | | Vapor (in.) Connection / Pipe S | size 5/8 Flare / 5/8 Flare | 5/8 Flare / 5/8 Flare | 5/8 Flare / 5/8 Flare | | | | | | Condensation Line (OD, ID, in.) | 1-1/4 / 1 | 1-1/4 / 1 | 1-1/4 / 1 | | | | | | Pipe Length ⁴ (Min./Standard/Max.) (ft) | 16.4 / 246 | 16.4 / 246 | 16.4 / 246 | | | | | | Piping Length ⁴ (no add'l refrigerant, ft) | 24.6 | 24.6 | 24.6 | | | | | | Max Elevation Difference (ft) | 98.4 | 98.4 | 98.4 | | | | | EEV: Electronic Expansion Valve IDU: Indoor Unit ODU: Outdoor Unit This data is rated 0 ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). $^{^1\}mbox{Optional Low Ambient Wind Baffle Kit allows operation down to -4 <math display="inline">^{\circ}\mbox{F}$ in cooling mode. ²Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. ³Take appropriate actions at the end of HVAC equipment life to recover, recycle, reclaim or destroy R32 refrigerant according to applicable regulations (40 CFR Part 82, Subpart F) under section 608 of CAA. ⁴Piping lengths are equivalent. ### **GENERAL DATA** Table 6: R32 Single Zone Multi-Position AHU with LGRED° System Specifications, continued. | Table 6: R32 Single Zone | IVIUITI-POSITION AHU WITH | LGRED° System Specifications, contin | | | |---|---------------------------|---|--|--| | System (Model) (Indoor | r Unit / Outdoor Unit) | KSSLA481A
(KNSLB481A / KUSXA482A) | | | | Cooling Capacity (Min/R | ated/Max) (Btu/h) | 18,400 ~ 46,000 ~ 55,000 | | | | Cooling Power Input ¹ (M | in/Rated/Max) (kW) | 1.40 ~ 3.74 ~ 5.73 | | | | EER2 (@95°F) | | 12.30 | | | | SEER2 | | 19.00 | | | | Heating Capacity (Min/R | ated/Max) (Btu/h) | 19,000 ~ 50,000 ~ 63,000 | | | | Heating Power Input ¹ (M | lin/Rated/Max) (kW) | 1.40 ~ 3.76 ~ 6.30 | | | | COP (@47°F) | | 3.91 | | | | HSPF2 | | 9.60 | | | | Maximum Heating Capac | ity (Btu/h) | | | | | Outdoor 17°F (WB) / Ind | loor 70°F (DB) | 54,000 | | | | Outdoor 5°F (WB) / Indo | | 46,000 | | | | Outdoor -4 °F (WB) / Inc | | 41,000 | | | | Outdoor -13 °F (WB) / Ir | ndoor 70°F (DB) | 36,000 | | | | ENERGY STAR / Cold C | Climate | Yes / Yes | | | | Power Supply (To Outdo | | 208-230 / 60 / 1 | | | | Power Supply Wiring (O (No. x AWG) | | 3 x 10 | | | | Power Wiring / Commun
(ODU to IDU) (No. x AW | ication Wiring²
/G) | 3 x 14 / 2 x 18 | | | | Indoor Unit Data | | | | | | Operating Bango | Cooling (°F WB) | 57 to 77 | | | | Operating Range | Heating (°F DB) | 58 to 81 | | | | Temperature Setting | Cooling (°F) | 65 to 86 | | | | Range | Heating (°F) | 61 to 86 | | | | Sound Pressure ³ dB(A) | Cooling (H/M/L) | 42 / 39 / 37 | | | | () | Heating (H/M/L) | 42 / 39 / 37 | | | | Net Dimensions (W x H | x D) (in.) | 21 x 55-3/16 x 21-3/8 | | | | Shipping Dimensions (W | / x H x D) (in.) | 57-3/32 x 16-27/32 x 30-7/16 | | | | Indoor Unit Net / Shippir | ng Weight (lbs.) | 146 / 160 | | | | Fan Type x Qty. | | Sirocco x 1 | | | | Fan Motor Output (W) | | 400 | | | | Fan Motor / Drive | | Brushless Digitally Controlled / Direct | | | | Airflow Rate (CFM) | Cooling (H/M/L) | 1,400 / 1,200 / 1,070 | | | | , , | Heating (H/M/L) | 1,400 / 1,200 / 1,070 | | | | Dehumidification Rate (p | ots./hr.) | 8.64 | | | | ESP Range (Min~Max) (| (in.wg) | 0.1~1.0 | | | | Fan Setting Value | | Constant Flow | | | | | | | | | EEV: Electronic Expansion Valve IDU: Indoor Unit ODU: Outdoor Unit This data is rated 0 ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). ¹Power Input is rated at high speed. ^All power supply wiring to the outdoor unit is field supplied, solid or stranded. The power wiring and the communication wiring from the outdoor unit to the indoor unit is field supplied and must be stranded, shielded or unshielded (if shielded, it must be grounded to the chassis of the outdoor unit only). All wiring must comply with applicable local and national codes. ³Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. # **GENERAL DATA** Table 7: R32 Single Zone Multi-Position AHU with LGRED° System Specifications, continued. | System (Model) (Ind | oor Unit / Outdoor Unit) | KSSLA481A
(KNSLB481A / KUSXA482A) | |-----------------------------------|---------------------------|---| | Outdoor Unit Data | | | | Operating Range ¹ | Cooling (°F DB) | 5 to 118 | | Operating Range | Heating (°F WB) | -13 to +64 | | Sound Pressure ² dB(| (A) (Cool/Heat) | 54 / 56 | | Default External Stat | ic Pressure (ESP) (in.wg) | 0.04 | | Net Dimensions (W > | (H x D) (in.) | 37-13/32 x 54-11/32 x 13 | | Shipping Dimensions | s (W x H x D) (in.) | 45-5/32 x 57-19/32 x 18-5/32 | | Outdoor Unit Exterior | r Color Codes | Warm Gray RAL 7044 Munsell 2.5Y 7.5/1 | | Net / Shipping Weigh | nt (lbs.) | 213.4 / 232.4 | | Fan Type x Qty. | | Axial x 2 | | Fan Motor Output (W | /) x Qty. | 124 x 2 | | Fan Motor / Drive | | Brushless Digitally Controlled / Direct | | Airflow Rate Max. (C | FM) | 1,942 x 2 | | Compressor (Type x | Qty.) | R1 Scroll x 1 | | Heat Exchanger | ' | | | Material and Fin Coa | ting | Copper Tube / Aluminum Fin (Gold Fin™ Coating on Outdoor Unit
Coil; N/A on Indoor Unit Coil) | | Rows / Columns / Fir | n per inch (ODU) | 3R x 64C x 14FPI | | Refrigerant | | | | Type ³ / Control | | R32 / EEV | | Pre-Charge (oz.) | | 106 | | Additional Charge (or | z/ft) | 0.43 | | Piping | | | | Liquid (in.) | Connection / Pipe Size | 3/8 Flare / 3/8 Flare | | Vapor (in.) | Connection / Pipe Size | 5/8 Flare / 5/8 Flare | | Condensation Line (0 | OD, ID, in.) | 1-1/4 / 1 | | Pipe Length ⁴ (Min./S | tandard/Max.) (ft) | 16.4 / 246 | | Piping Length ⁴ (no ac | dd'l refrigerant, ft) | 24.6 | | Max Elevation Differen | ence (ft) | 98.4 | EEV: Electronic Expansion Valve IDU: Indoor Unit ODU: Outdoor Unit This data is rated 0 ft above sea level with 24.6 of refrigerant line per indoor unit and a 0 ft level difference outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB) and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). Heating capacity rating obtained with air entering the indoor unit at 70°F dry bulb (DB) and 59°F wet bulb (WB) and outdoor ambient conditions of 47°F dry bulb (DB) and 43°F wet bulb (WB). ¹Optional Low Ambient Wind Baffle Kit allows operation down to -4°F in cooling mode. ²Sound Pressure levels are tested in an anechoic chamber under ISO Standard 3745. ³Take appropriate actions at the end of HVAC equipment life to recover, recycle, reclaim or destroy R32 refrigerant according to applicable regulations (40 CFR Part 82, Subpart F) under section 608 of CAA. ⁴Piping lengths are equivalent. # **ELECTRICAL DATA** Table 8: R32 Single Zone Multi-Position AHU Indoor Unit with LGRED° Electrical Data Table. | | Voltage | | | Datad | | ower Supp | ly | | Powe | r Input (W) | | | | |-----------|------------------|------|-----|-------------------|----|-----------|---------|-----------------|-----------------|---------------------------------|-----|-----------------|-----------------| | Model | Voltage
Range | MCA | MOP | Rated
Amps (A) | Hz | Volts | Phase | Max.
Cooling | Max.
Heating | L / M / H at
Factory Default | | | | | NA Frames | | | | | | | | | | | | | | | KNSLB121A | | 3.5 | | 2.8 | | | | 228 | 228 | 38 / 56 / 91 | | | | | KNSLB181A | 208-230 | 3.5 | 15 | 2.8 | 60 | 208-230 | 1 | 228 | 228 | 49 / 79 / 125 | | | | | KNSLB241A | | 3.5 | | 2.8 | | | | 228 | 228 | 67 / 110 / 173 | | | | | NB Frames | | | | | | | | | | | | | | | KNSLA301A | | 4.25 | | 3.4 | | | | 366 | 366 | 131 / 152 / 189 | | | | | KNSLA361A | 208-230 | 4.25 | 15 | 3.4 | 60 | 60 | 60 | 60 | 208-230 | 4 | 366 | 366 | 147 / 187 / 260 | | KNSLB421A | 200-230 | 4.25 | 15 | 3.4 | | | 200-230 | 00 200-230 | ' | 366 | 366 | 157 / 220 / 337 | | | KNSLB481A | | 4.25 | | 3.4 | | | | 366 | 366 | 157 / 220 / 337 | | | | Table 9: R32 Single Zone Multi-Position AHU Outdoor Unit with LGRED° Electrical Data Table. | | | | | | | | | Compressor | Condenser | Fan Motor(s) |
|-----------------|----------------|-------|---------|---------------------------------|------|-----|------------------------|--------------------------------------|-----------------------|-------------------------------| | Nominal
Tons | Unit Model No. | Hertz | Voltage | Voltage Range
(Min. to Max.) | MCA | MOP | Compressor
Quantity | Compressor
Motor RLA
(Cooling) | Condenser
Fan Qty. | Condenser
Fan Motor
FLA | | 1 | KUSXA121A | | | | 19.1 | 30 | | 14.0 | | | | 1-1/2 | KUSXA181A | | | | 19.1 | 30 | | 14.0 | 1 | 1.6 | | 2 | KUSXA241A | | | | 19.1 | 30 | | 14.0 | | | | 2-1/2 | KUSXA301A | 60 | 208/230 | 187-253 | 32.0 | 35 | 1 | 22.0 | | | | 3 | KUSXA361A | | | | 32.0 | 35 | | 22.0 | , | 1640 | | 3-1/2 | KUSXA422A | | | | 32.0 | 40 |] | 22.0 |] 2 | 1.6 x 2 | | 4 | KUSXA482A | | | | 32.0 | 40 | | 22.0 | | | Voltage tolerance is ±10%. Maximum allowable voltage unbalance is 2%. MCA = Minimum Circuit Ampacity. LRA = Locked Motor Amps RLA = Rated Load Amps. FLA = Full Load Amps. W: Fan Motor Rated Output (W) Maximum Overcurrent Protection (MOP) is calculated as follows: (Largest motor FLA x 2.25) + (Sum of other motor FLA) rounded down to the nearest standard fuse size. # **FUNCTIONS, CONTROLS, OPTIONS** Table 10: R32 Single Zone Multi-Position AHU with LGRED° System Functions, Controls, Options Table. | | System Model No. | KSSLA121A, KSSLA181A, KSSLA241A, KSSLA301A,
KSSLA421A, KSSLA481A | |----------------------------------|--|---| | Air-
flow | Air Supply Outlet | 1 | | E A | Fan Speed Airflow Steps (Fan / Cool / Heat) | 3/3/3 | | Air
Purify-
ing | Prefilter (Washable / Anti-fungal ¹) | X | | | Air Purify | $\sqrt{}$ | | | Hot Start | $\sqrt{}$ | | | Self Diagnostics | $\sqrt{}$ | | | Defrost | $\sqrt{}$ | | | Dry (Dehumidification) Operation | $\sqrt{}$ | | | Auto Changeover | X | | | Auto Cleaning (Coil Dry) | $\sqrt{}$ | | Functions | Auto Restart Operation | $\sqrt{}$ | | ctic | Child Lock | $\sqrt{}$ | | T | Sleep Mode | $\sqrt{}$ | | | Timer (24 Hour On / Off) | $\sqrt{}$ | | | Weekly Timer | $\sqrt{}$ | | | Two Thermistor Control | $\sqrt{}$ | | | E.S.P. Control | | | | Night Quiet Operation | $\sqrt{}$ | | | Pump Down (Forced Cooling Operation) | $\sqrt{}$ | | a - | AC Smart 5 | PACS5A000 | | Central
Control-
lers | ACP 5 | PACP5A000 | | రిద్ | PI-485 | PMNFP14A1 | | Remote
Controllers | MultiSITE™ CRC1/CRC1+ | PREMTBVC0/1 | | Remote | Premium Remote Controller | PREMTA000 | | | Programmable Wired Remote Controller | PREMTB10U | | Integra-
tion
Solution | MultiSITE Communications Manager | PBACNBTR0A | | 4 £1 | LonWorks® Gateway | ZHWLONWK0 | | Build-
ing
Network
Unit | AC Smart BACnet® Gateway | PBACNA000 | | | Dry Contact | PDRYCB100, PDRYCB300, PDRYCB320, PDRYCB400 | | | Low Ambient Wind Baffle Kit | ZLABGP04A | | | Wi-Fi | PWFMDD200 | | <u>_</u> | Drain Pan Heater | $\sqrt{}$ | | Other | Smart Inverter Monitoring System (SIMS) | | | O | R32 Refrigerant Detection Sensor | √ | | | Multi-Position AHU Downflow kit | PNDFA0 | | | Aux. Heat Relay Kit | PRARH1 | | | Remote temperature sensor | PQRSTA0 | ¹ Primary washable filters. Not all controllers can support all features. Contact your LG representative for details. X = Not available ^{√ =} Standard feature o = Optional accessory (must be purchased separately) ### **ACCESSORIES** #### LG Monitoring View (LGMV) Diagnostic Software and Cable LG Monitoring View (LGMV) is a maintenance and troubleshooting tool for Multi V™ air conditioning systems. LGMV formats are available for computer or mobile phone use. The main screen for LGMV allows the user to view the following real time data: - Actual inverter compressor speed - · Target inverter compressor speed - · Actual outdoor fan speed - Target outdoor unit fan speed - · Actual superheat - · Target superheat - · Actual subcooler circuit superheat - · Target subcooler circuit superheat - · Main EEV position - · Subcooling EEV position - Inverter compressor current transducer value - Outdoor air temperature - · Actual high pressure/saturation temperature - · Actual low pressure/saturation temperature - Suction temperature - Inverter compressor discharge temperature - Constant speed compressor discharge temperature - Front outdoor coil pipe temperature - · Back outdoor coil pipe temperature - Liquid line pipe temperature - Subcooler inlet temperature - Subcooler outlet temperature - · Average indoor unit (IDU) pipe temperature - Inverter compressor operation indicator light - Four-way reversing valve operation indicator light - Pressure graph showing actual low pressure and actual high pressure levels - · Error code display - · Operating mode indicator - Target high pressure - Target low pressure - PCB (printed circuit board) version - · Software version - Installer name - · Model no. of outdoor units - · Site name - · Total number of connected indoor units - Communication indicator lights - · Indoor unit capacity - · Indoor unit operating mode - · Indoor unit fan speed - Indoor unit EEV position - · Indoor unit room temperature - · Indoor unit inlet pipe temperature - · Indoor unit outlet pipe temperature puter View Example). Figure 3: Sample Cycleview (Com- · Indoor unit error code Additional screens can be accessed by tabs on the main screen - 1. Cycleview: Graphic of internal components including - · Compressors showing actual speeds - EEVs - Indoor Units - Liquid injection valves - Temperature and pressure sensors - Four-way reversing valve - Outdoor fans showing status and speeds #### 2. Graph: Full screen graph of actual high and low pressures and high and low pressure limits. A sliding bar enables user to go back in time and view data. - Control IDU: Enables user to turn on all IDUs default setpoints of 86°F in heat mode or 64°F in cool mode. - 4. Setting: Converts metric values to imperial values. - 5. Making Data: Recording of real time data to a separate file created to be stored on the user's computer. - 6. Loading Data: Recorded data from a saved ".CSV" file can be loaded to create an LGMV session. - 7. Electrical Data: Screen is changed to show the following: - Inverter compressor - Constant compressor - Amps / Volts / Power Hz - Current transducer value - Inverter control board fan Hz - Phase In lieu of connecting to the outdoor unit, user has the option to connect to the indoor unit with a connector kit. When connected through the indoor unit, user will not be able to record data. This software can be used to both pre-set-up new systems and troubleshoot existing systems. LGMV data can be recorded to a ".CSV" file and emailed to an LG representative to assist with diagnostic evaluations. LGMV is available in different formats. Contact your LG Sales Representative for system requirements and for more information. ### **ACCESSORIES** #### **ThinQ** LG ThinQ is an optional Wi-Fi module, along with a free smart phone app that provides monitoring and remote control capabilities for certain LG single zone systems. The app has the following features and benefits: - Sign in to the app using LG credentials, or using Google® or Facebook® login credentials. Users only have to log in to the app once; the app remembers login details for subsequent logins. - View current temperature settings of the air conditioning unit and change temperature, fan speed, and air flow direction from anywhere in the house or at a remote location (through the use of wireless connection). Multiple users can control the household air conditioning unit remotely. - · Monitor filter usage of the unit. - · Set up weekly schedules to start and stop air conditioner activity. - Set up the unit to run in different Modes, depending on the user's schedule. Set up specific temperatures for when the user is home, away on vacation, or sleeping. - Troubleshoot problems, and view tips on general maintenance of the system using the Smart Diagnosis function. Figure 4: Example of LG ThinQ Screen (appearances may differ depending on version of software). *Google is a registered trademark of Google Inc.; Facebook is a registered trademark of Facebook. Contact your LG Sales Representative or visit www.lghvac.com for system requirements, how to download the app, a user's manual, or other information. #### **Electric Heater** Table 11: Electric Heater Accessory for Multi-Position AHU with LGRED°units | Accessory | Model Number | |----------------------|--------------| | 3kW Electric Heater | ANEH033C1 | | 5kW Electric Heater | ANEH053C1 | | 8kW Electric Heater | ANEH083C2 | | 10kW Electric Heater | ANEH103C2 | | 15kW Electric Heater | ANEH153C3 | | 20kW Electric Heater | ANEH203C3 | All accessories are sold separately. Figure 5: Electric Heater. Table 12: Electric Heater Capacities. | Indoor Unit Model No. / | Model Number / Heater Capacity | | | | | | | | | | |-------------------------|--------------------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--|--|--|--| | Capacity (MBh) | ANEH033C1
(3kW) | ANEH053C1
(5kW) | ANEH083C2
(8kW) | ANEH103C2
(10kW) | ANEH153C3
(15kW) | ANEH203C3
(20kW) | | | | | | KNSLB121A (12) | $\sqrt{}$ | √ | √ | Not available | Not available | Not available | | | | | | KNSLA181A (18) | $\sqrt{}$ | √ | √ | $\sqrt{}$ | Not available | Not available | | | | | | KNSLA241A (24) | $\sqrt{}$ | √ | √ | √ | Not available | Not available | | | | | | KNSLA301A (30) | $\sqrt{}$ | √ | √ | √ | Not available | Not available | | | | | | KNSLA361A (36) | √ | √ | √ | √ | √ | Not available | | | | | | KNSLB421A (42) | V | √ | √ | √ | √ | √ | | | | | | KNSLB481A (48) | V | √ | √ | √ | √ · | V | | | | | Image shown above may vary depending on model capacity. For additional information, refer to the Electric Heater Manual. If a Third-Party Dry Contact and an LG internal heater or an
LG Auxiliary Heat Kit is installed, supplemental heat capability cannot be controlled by the Third-PartyThermostat. # **Factory Installed Drain Pan Heater** Figure 6: Outdoor Unit Drain Pan Heater. Table 13: Drain Pan Heater Capacities. | ODU | Heater kW | Accessory Model | Note | |--|-----------|-----------------|----------| | KUSXA121A, KUSXA181A,
KUSXA241A, KUSXA301A,
KUSXA361A, KUSXA422A,
KUSXA482A | 120 W | PQSH1200 | Included | KUSXA121A, KUSXA181A, KUSXA241A #### Figure 7: KUSXA121A, KUSXA181A, KUSXA241A Outdoor Unit Dimensions. # **OUTDOOR UNIT DIMENSIONS** KUSXA301A, KUSXA361A, KUSXA422A, KUSXA482A Figure 8: KUSXA301A, KUSXA361A, KUSXA422A, KUSXA482A Outdoor Unit Dimensions. # OUTDOOR UNIT CENTER OF GRAVITY / CORNER WEIGHT Figure 9: KUSXA121A, KUSXA181A, KUSXA241A Center of Gravity and Corner Weight Dimensions Diagram. Figure 10: KUSXA301A, KUSXA361A, KUSXA422A, KUSXA482A Center of Gravity and Corner Weight Dimensions Diagram. Table 14: Center of Gravity and Corner Weight Dimensions. | Model No. | Weight (lb.) | | Center of Gravity (in.) | | | Leg (in.) | | Corner Weight (lb.) | | | | |-----------|--------------|-------|-------------------------|----------|---------|-----------|---------|---------------------|------|------|------| | Woder No. | Shipping | Net | а | b | С | d | е | Α | В | С | D | | KUSXA121A | 160.1 | 141.8 | 23 7/32 | 12 19/32 | 5 29/32 | 24 13/32 | 14 3/16 | 20.0 | 28.0 | 54.7 | 39.0 | | KUSXA181A | 160.1 | 141.8 | 23 7/32 | 12 19/32 | 5 29/32 | 24 13/32 | 14 3/16 | 20.0 | 28.0 | 54.7 | 39.0 | | KUSXA241A | 160.1 | 141.8 | 23 7/32 | 12 19/32 | 5 29/32 | 24 13/32 | 14 3/16 | 20.0 | 28.0 | 54.7 | 39.0 | | KUSXA301A | 214.3 | 190.2 | 27 7/32 | 21 15/32 | 6 5/8 | 24 13/32 | 14 3/16 | 15.8 | 18.1 | 84.9 | 74.4 | | KUSXA361A | 214.3 | 190.2 | 27 7/32 | 21 15/32 | 6 5/8 | 24 13/32 | 14 3/16 | 15.8 | 18.1 | 84.9 | 74.4 | | KUSXA422A | 232.4 | 213.4 | 27 7/32 | 21 15/32 | 6 5/8 | 24 13/32 | 14 3/16 | 17.4 | 19.9 | 93.4 | 81.8 | | KUSXA482A | 232.4 | 213.4 | 27 7/32 | 21 15/32 | 6 5/8 | 24 13/32 | 14 3/16 | 17.4 | 19.9 | 93.4 | 81.8 | #### **NOTICE** - Diagrams above are for illustrative purposes only. Actual appearance depends on model type. - Design features and information of outdoor unit may be changed without notifications due to LG's policy of innovation. - The center of gravity and corner weight may be different from the actual values because these are simulation results. # INDOOR UNIT DIMENSIONS KNSLB121A, KNSLA181A, KNSLA241A (NA Frame) Figure 11: KNSLB121A, KNSLA181A, KNSLA241A Indoor Unit Dimensions. # **LGRED°** # INDOOR UNIT DIMENSIONS KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A (NB Frame) Figure 12: KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A Indoor Unit Dimensions. # EXTERNAL STATIC PRESSURE AND AIR FLOWLGRED° TABLES AND GRAPHS KNSLB121A, KNSLA181A, KNSLA241A (NA Frame) Table 15: KNSLB121A, KNSLA181A, KNSLA241A External Static Pressure and Air Flow Table. | | 1 | | 1 | | Externa | al Static | Pressure | e (in.wg) | | | | |-------|-------|--------------------|------|-----|---------|-----------|----------|-----------|-----|------|-----| | Set \ | /alue | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | | | Air Flow Rate(CFM) | | | | | | | | | | | | 400 | 374 | | | | | | | | | | | | 500 | 611 | 360 | | | | | | | | | | | 600 | 801 | 646 | 420 | | | | | | | | | RPM | 700 | 1006 | 886 | 731 | 530 | | | | | | | | RPIVI | 800 | | 1091 | 974 | 833 | 671 | 381 | | | | | | | 900 | | | | 1059 | 953 | 812 | 653 | 339 | | | | | 1000 | | | | | | | 943 | 815 | 575 | 318 | | | 1100 | | | | | | | | | 1006 | 861 | #### **NOTICE** - To get the desired air flow and external static pressure combination, use the setting value from the table. Using a setting value other than that listed in the table will not provide the desired combination. - Table data is based at 230V. Air flow rate varies according to voltage fluctuation. Figure 13: KNSLB121A, KNSLA181A, KNSLA241A External Static Pressure and Air Flow Chart. # LGRED EXTERNAL STATIC PRESSURE AND AIR FLOW TABLES AND GRAPHS KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A (NB Frame) Table 16: KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A External Static Pressure and Air Flow Table. | | | | | | Exterr | nal Static F | Pressure (i | n.wg) | | | | |-------|-------|--------------------|------|------|--------|--------------|-------------|-------|------|------|------| | Set V | /alue | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | | | Air Flow Rate(CFM) | | | | | | | | | | | | 400 | 374 | | | | | | | | | | | | 500 | 710 | 402 | | | | | | | | | | | 600 | 953 | 734 | 445 | | | | | | | | | | 700 | 1200 | 1052 | 868 | 618 | | | | | | | | RPM | 800 | 1423 | 1285 | 1144 | 981 | 738 | 364 | | | | | | | 900 | 1645 | 1539 | 1405 | 1288 | 1130 | 893 | 650 | 349 | | | | | 1000 | | | | 1571 | 1440 | 1285 | 1130 | 900 | 650 | | | | 1100 | | | | | | 1578 | 1490 | 1327 | 1190 | 964 | | | 1200 | | | | | | | | 1652 | 1539 | 1405 | #### **NOTICE** - To get the desired air flow and external static pressure combination, use the setting value from the table. Using a setting value other than that listed in the table will not provide the desired combination. - Table data is based at 230V. Air flow rate varies according to voltage fluctuation. Figure 14: KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A External Static Pressure and Air Flow Chart. # **EXTERNAL STATIC PRESSURE SETTING VALUES** Indoor Unit External Static Pressure and Air Flow Tables Table 17: R32 Multi-Position AHU with LGRED° Indoor Unit External Static Pressure and Air Flow Table. | Madal | Ctan | Step CFM | Setting Value @ ESP (in.wc) | | | | | | | | | | |-----------|------|----------|------------------------------|-----|-----|----------|--------|---------|---------|-----|-----|-----| | Model | Step | CFIVI | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | | HIGH | 500 | | | | | | | | | | | | KNSLB121A | MID | 460 | | | C | Constant | Flow F | Rate co | ndition | | | | | | LOW | 420 | | | | | | | | | | | | | HIGH | 600 | | | | | | | | | | | | KNSLA181A | MID | 510 | | | C | Constant | Flow F | Rate co | ndition | | | | | | LOW | 440 | | | | | | | | | | | | | HIGH | 800 | | | | | | | | | | | | KNSLA241A | MID | 700 | Constant Flow Rate condition | | | | | | | | | | | | LOW | 580 | | | | | | | | | | | | | HIGH | 875 | 58 | 65 | 73 | 78 | 83 | 90 | 96 | 101 | 105 | 110 | | KNSLA301A | MID | 750 | 51 | 58 | 62 | 66 | 70 | 78 | 83 | 87 | 90 | 93 | | | LOW | 630 | 50 | 50 | 53 | 56 | 59 | 65 | 70 | 73 | 75 | 77 | | | HIGH | 1050 | 63 | 70 | 76 | 82 | 86 | 94 | 98 | 104 | 105 | 112 | | KNSLA361A | MID | 980 | 58 | 63 | 70 | 75 | 81 | 84 | 87 | 91 | 95 | 98 | | | LOW | 900 | 54 | 58 | 66 | 71 | 75 | 78 | 81 | 84 | 78 | 83 | | | HIGH | 1225 | 71 | 77 | 83 | 88 | 93 | 98 | 102 | 110 | 111 | 116 | | KNSLB421A | MID | 1100 | 61 | 66 | 71 | 76 | 83 | 84 | 87 | 93 | 95 | 101 | | | LOW | 1000 | 56 | 62 | 67 | 72 | 76 | 79 | 82 | 85 | 88 | 91 | | | HIGH | 1400 | 79 | 85 | 90 | 94 | 99 | 105 | 105 | 113 | 115 | 120 | | KNSLB481A | MID | 1200 | 67 | 74 | 79 | 81 | 86 | 89 | 93 | 97 | 100 | 105 | | | LOW | 1070 | 61 | 65 | 69 | 73 | 77 | 80 | 83 | 86 | 89 | 92 | #### Sound Pressure for Outdoor Units Figure 16: Multi-Position AHU with LGRED° Outdoor Unit Sound Pressure Level Measurement Location. - Measurements taken with no attenuation and units operating at full load normal operating condition. - Sound level will vary depending on a range of factors such as construction (acoustic absorption coefficient) of particular area in which the equipment is installed. - Sound levels are measured in dB(A)±1. - Tested in anechoic chamber per ISO Standard 3745. Table 18: R32 Multi-Position AHU with LGRED° Outdoor Unit Sound Pressure Levels. | Model | Sound Pressure Levels (dB[A]) | | | | | | | |-----------|-------------------------------|---------|--|--|--|--|--| | Model | Cooling | Heating | | | | | | | KUSXA121A | 51 | 52 | | | | | | | KUSXA181A | 51 | 52 | | | | | | | KUSXA241A | 51 | 52 | | | | | | | KUSXA301A | 52 | 54 | | | | | | | KUSXA361A | 52 | 54 | | | | | | | KUSXA422A | 54 | 56 | | | | | | | KUSXA482A | 54 | 56 | | | | | | Figure 15: KUSXA121A Outdoor Unit Sound Pressure Level Diagram. #### Sound Pressure for Outdoor Units Figure 17: KUSXA181A, KUSXA241A, KUSXA301A, KUSXA361A, KUSXA422A, KUSXA482A Outdoor Unit Sound Pressure Level Diagram. #### Sound Power for Outdoor Units Table 19: R32 Multi-Position AHU with LGRED° Outdoor Unit Sound Power Levels. | Model | Sound Power Levels (dB[A]) | |-----------|----------------------------| | KUSXA121A | 67 | | KUSXA181A | 67 | | KUSXA241A | 67 | | KUSXA301A | 69 | | KUSXA361A | 69 | | KUSXA422A | 71 | | KUSXA482A | 71 | Figure 18: Multi-Position AHU with LGRED° Outdoor Unit Sound Power Level Diagram. #### **LGRED°** #### Sound Pressure for Indoor Units Figure 19: Multi-Position AHU with LGRED° Indoor Unit Sound Pressure Level Measurement Location. - Measurement taken 2.6 ft. below the bottom of the unit and at a distance of 3.3 ft. from the face of the unit. - Measurements taken with no attenuation and units operating at full load normal operating condition. - Sound level will vary depending on a range of factors such as construction (acoustic absorption coefficient) of particular area in which the equipment is installed. - Sound power levels are measured in dB(A)±1. - Tested in anechoic chamber per ISO Standard 3745. Table 20: R32 Multi-Position AHU with LGRED° Indoor Unit Sound Levels. | Model | Sound Pressure Levels (dB[A]) (H / M / L) | |-----------|---| | Wodei | External Static Pressure 0.5 [in wg] | | KNSLB121A | 34 / 31 / 28 | | KNSLA181A | 35 / 32 / 29 | | KNSLA241A | 36 / 33 / 29 | | KNSLA301A | 40 / 37 / 35 | | KNSLA361A | 40 / 37 / 35 | | KNSLB421A | 41 / 38 / 36 | | KNSLB481A | 42 / 39 / 37 | Figure 20: KNSLB121A
Indoor Unit Sound Pressure Level Diagram. Figure 21: KNSLA181A Indoor Unit Sound Pressure Level Diagram. ### **LGRED°** # **ACOUSTIC DATA** ### Sound Pressure for Indoor Units Figure 22: KNSLA241A Indoor Unit Sound Pressure Level Diagram. Figure 23: KNSLA301A Indoor Unit Sound Pressure Level Diagram. # **ACOUSTIC DATA** # **LGRED°** ### Sound Pressure for Indoor Units Figure 24: KNSLA361A Indoor Unit Sound Pressure Level Diagram. Figure 25: KNSLB421A Indoor Unit Sound Pressure Level Diagram. ### Sound Pressure for Indoor Units Figure 26: KNSLB481A Indoor Unit Sound Pressure Level Diagram. # PERFORMANCE DATA Cooling Capacity on page 41 Maximum Cooling Capacity on page 48 Heating Capacity on page 55 Maximum Heating Capacity on page 62 Correction Factors on page 69 Check Selection on page 70 ### KSSLA121A (KNSLB121A / KUSXA121A) Table 21: KSSLA121A (KNSLB121A / KUSXA121A) Cooling Capacities. | | | | | | | ln | door A | ir Tem | perat | ure (°F | DB / ° | °F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|-------|-------|---------|------|-------|---------|------| | Outdoor | 6 | 88 / 57 | | | 72 / 61 | | | 77 / 64 | • | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | Air Temp.
(°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 12.29 | 10.76 | 0.55 | 13.06 | 11.36 | 0.57 | 13.81 | 11.00 | 0.60 | 14.37 | 11.23 | 0.61 | 15.34 | 11.33 | 0.61 | 16.10 | 11.54 | 0.63 | | -0.4 | 12.28 | 10.82 | 0.56 | 13.05 | 11.43 | 0.58 | 13.81 | 11.07 | 0.61 | 14.36 | 11.30 | 0.61 | 15.33 | 11.39 | 0.62 | 16.10 | 11.61 | 0.63 | | 5 | 12.27 | 10.91 | 0.57 | 13.03 | 11.53 | 0.59 | 13.80 | 11.16 | 0.61 | 14.35 | 11.39 | 0.62 | 15.32 | 11.50 | 0.63 | 16.08 | 11.71 | 0.65 | | 10 | 12.26 | 11.00 | 0.58 | 13.03 | 11.62 | 0.60 | 13.78 | 11.25 | 0.62 | 14.33 | 11.49 | 0.63 | 15.31 | 11.58 | 0.64 | 16.07 | 11.81 | 0.65 | | 15 | 12.26 | 11.08 | 0.59 | 13.01 | 11.71 | 0.61 | 13.78 | 11.34 | 0.63 | 14.33 | 11.57 | 0.64 | 15.30 | 11.68 | 0.65 | 16.06 | 11.90 | 0.67 | | 20 | 12.24 | 11.17 | 0.60 | 13.01 | 11.81 | 0.62 | 13.76 | 11.43 | 0.64 | 14.31 | 11.67 | 0.65 | 15.28 | 11.76 | 0.66 | 16.05 | 11.99 | 0.67 | | 25 | 12.24 | 11.26 | 0.61 | 12.99 | 11.89 | 0.63 | 13.76 | 11.51 | 0.65 | 14.31 | 11.76 | 0.66 | 15.28 | 11.86 | 0.67 | 16.03 | 12.08 | 0.69 | | 30 | 12.22 | 11.34 | 0.61 | 12.99 | 11.99 | 0.63 | 13.74 | 11.61 | 0.66 | 14.29 | 11.85 | 0.67 | 15.26 | 11.95 | 0.68 | 16.02 | 12.18 | 0.69 | | 35 | 12.22 | 11.43 | 0.62 | 12.97 | 12.07 | 0.65 | 13.74 | 11.69 | 0.67 | 14.28 | 11.94 | 0.67 | 15.25 | 12.04 | 0.69 | 16.01 | 12.27 | 0.70 | | 40 | 12.21 | 11.52 | 0.63 | 12.97 | 12.17 | 0.65 | 13.72 | 11.78 | 0.68 | 14.27 | 12.03 | 0.69 | 15.24 | 12.13 | 0.70 | 16.00 | 12.36 | 0.71 | | 45 | 12.19 | 11.61 | 0.64 | 12.96 | 12.26 | 0.66 | 13.72 | 11.87 | 0.69 | 14.26 | 12.12 | 0.69 | 15.23 | 12.22 | 0.71 | 15.99 | 12.45 | 0.72 | | 50 | 12.19 | 11.69 | 0.65 | 12.94 | 12.35 | 0.67 | 13.70 | 11.96 | 0.69 | 14.25 | 12.21 | 0.71 | 15.22 | 12.31 | 0.72 | 15.97 | 12.55 | 0.73 | | 55 | 12.18 | 11.77 | 0.65 | 12.94 | 12.44 | 0.68 | 13.69 | 12.05 | 0.71 | 14.24 | 12.30 | 0.71 | 15.20 | 12.40 | 0.73 | 15.96 | 12.64 | 0.74 | | 60 | 12.17 | 11.86 | 0.67 | 12.92 | 12.53 | 0.69 | 13.68 | 12.13 | 0.71 | 14.23 | 12.39 | 0.72 | 15.19 | 12.49 | 0.73 | 15.95 | 12.73 | 0.75 | | 65 | 12.16 | 11.94 | 0.67 | 12.92 | 12.62 | 0.70 | 13.67 | 12.22 | 0.72 | 14.22 | 12.48 | 0.73 | 15.18 | 12.58 | 0.75 | 15.94 | 12.82 | 0.76 | | 70 | 12.15 | 12.03 | 0.68 | 12.90 | 12.71 | 0.71 | 13.66 | 12.30 | 0.73 | 14.21 | 12.56 | 0.74 | 15.17 | 12.67 | 0.75 | 15.92 | 12.91 | 0.77 | | 75 | 11.86 | 11.80 | 0.72 | 12.61 | 12.52 | 0.75 | 13.36 | 12.13 | 0.77 | 13.91 | 12.40 | 0.78 | 14.87 | 12.52 | 0.79 | 15.63 | 12.77 | 0.81 | | 80 | 11.57 | 11.51 | 0.75 | 12.32 | 12.26 | 0.78 | 13.07 | 11.95 | 0.81 | 13.61 | 12.23 | 0.82 | 14.57 | 12.36 | 0.83 | 15.32 | 12.61 | 0.85 | | 85 | 11.28 | 11.22 | 0.79 | 12.03 | 11.97 | 0.82 | 12.78 | 11.77 | 0.85 | 13.31 | 12.05 | 0.86 | 14.27 | 12.19 | 0.87 | 15.02 | 12.46 | 0.89 | | 90 | 10.99 | 10.93 | 0.83 | 11.74 | 11.68 | 0.86 | 12.48 | 11.58 | 0.89 | 13.02 | 11.86 | 0.90 | 13.97 | 12.02 | 0.92 | 14.72 | 12.30 | 0.93 | | 95 | 10.67 | 10.62 | 0.87 | 11.42 | 11.36 | 0.89 | 12.16 | 11.49 | 0.93 | 12.50 | 11.60 | 0.94 | 13.65 | 11.96 | 0.96 | 14.39 | 12.24 | 0.98 | | 100 | 10.41 | 10.36 | 0.90 | 11.15 | 11.10 | 0.93 | 11.90 | 11.21 | 0.97 | 12.34 | 11.42 | 0.98 | 13.39 | 11.70 | 1.00 | 14.13 | 11.99 | 1.02 | | 105 | 10.15 | 10.10 | 0.94 | 10.90 | 10.84 | 0.97 | 11.64 | 10.95 | 1.01 | 12.17 | 11.24 | 1.02 | 13.13 | 11.45 | 1.04 | 13.87 | 11.74 | 1.06 | | 110 | 9.89 | 9.84 | 0.97 | 10.64 | 10.59 | 1.01 | 11.38 | 10.60 | 1.05 | 11.92 | 10.90 | 1.06 | 12.87 | 11.12 | 1.08 | 13.61 | 11.42 | 1.10 | | 115 | 9.63 | 9.58 | 1.01 | 10.38 | 10.32 | 1.05 | 11.12 | 10.33 | 1.09 | 11.66 | 10.63 | 1.10 | 12.60 | 10.85 | 1.12 | 13.35 | 11.15 | 1.14 | | 118 | 9.48 | 9.43 | 1.03 | 10.22 | 10.17 | 1.07 | 10.97 | 10.27 | 1.11 | 11.50 | 10.58 | 1.13 | 12.45 | 10.82 | 1.15 | 13.19 | 11.13 | 1.17 | | 122 | 9.42 | 9.38 | 1.07 | 10.17 | 10.12 | 1.10 | 10.91 | 10.25 | 1.14 | 11.45 | 10.56 | 1.15 | 12.40 | 10.80 | 1.18 | 13.14 | 11.12 | 1.20 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. Table 22: KSSLA181A (KNSLA181A / KUSXA181A) Cooling Capacities. | | | | | | | ln | door A | ir Tem | perat | ure (°F | DB / ' | °F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|-------|-------|---------|------|-------|---------|------| | Outdoor
Air Temp. | 6 | 88 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | (°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 17.70 | 15.02 | 0.78 | 18.80 | 15.86 | 0.81 | 19.89 | 15.36 | 0.85 | 20.69 | 15.68 | 0.86 | 22.09 | 15.82 | 0.87 | 23.19 | 16.12 | 0.89 | | -0.4 | 17.69 | 15.11 | 0.79 | 18.79 | 15.96 | 0.82 | 19.88 | 15.46 | 0.86 | 20.68 | 15.78 | 0.87 | 22.08 | 15.91 | 0.88 | 23.18 | 16.21 | 0.90 | | 5 | 17.67 | 15.24 | 0.81 | 18.77 | 16.10 | 0.84 | 19.87 | 15.59 | 0.87 | 20.66 | 15.91 | 0.88 | 22.06 | 16.06 | 0.90 | 23.16 | 16.36 | 0.92 | | 10 | 17.66 | 15.36 | 0.82 | 18.76 | 16.22 | 0.85 | 19.85 | 15.71 | 0.88 | 20.64 | 16.04 | 0.90 | 22.05 | 16.18 | 0.91 | 23.14 | 16.49 | 0.93 | | 15 | 17.65 | 15.48 | 0.83 | 18.74 | 16.36 | 0.86 | 19.84 | 15.84 | 0.90 | 20.63 | 16.16 | 0.91 | 22.03 | 16.31 | 0.93 | 23.12 | 16.62 | 0.95 | | 20 | 17.63 | 15.60 | 0.85 | 18.73 | 16.49 | 0.88 | 19.82 | 15.96 | 0.91 | 20.61 | 16.30 | 0.92 | 22.01 | 16.43 | 0.94 | 23.11 | 16.74 | 0.96 | | 25 | 17.62 | 15.72 | 0.86 | 18.71 | 16.61 | 0.89 | 19.81 | 16.08 | 0.93 | 20.60 | 16.43 | 0.94 | 22.00 | 16.56 | 0.95 | 23.09 | 16.87 | 0.97 | | 30 | 17.60 | 15.84 | 0.87 | 18.70 | 16.74 | 0.90 | 19.79 | 16.21 | 0.94 | 20.58 | 16.55 | 0.95 | 21.98 | 16.69 | 0.96 | 23.07 | 17.00 | 0.98 | | 35 | 17.59 | 15.96 | 0.88 | 18.68 | 16.86 | 0.92 | 19.78 | 16.33 | 0.95 | 20.57 | 16.68 | 0.96 | 21.96 | 16.81 | 0.97 | 23.05 | 17.14 | 0.99 | | 40 | 17.58 | 16.09 | 0.90 | 18.67 | 16.99 | 0.93 | 19.76 | 16.45 | 0.96 | 20.55 | 16.80 | 0.97 | 21.94 | 16.94 | 0.99 | 23.04 | 17.27 | 1.01 | | 45 | 17.56 | 16.21 | 0.91 | 18.66 | 17.12 | 0.94 | 19.75 | 16.57 | 0.97 | 20.53 | 16.92 | 0.98 | 21.93 | 17.06 | 1.00 | 23.02 | 17.39 | 1.02 | | 50 | 17.55 | 16.32 | 0.92 | 18.64 | 17.24 | 0.96 | 19.73 | 16.70 | 0.98 | 20.52 | 17.05 | 1.00 | 21.91 | 17.20 | 1.02 | 23.00 | 17.52 | 1.04 | | 55 | 17.54 | 16.44 | 0.93 | 18.63 | 17.38 | 0.96 | 19.72 | 16.82 | 1.00 | 20.50 | 17.17 | 1.01 | 21.89 | 17.32 | 1.03 | 22.98 | 17.65 | 1.05 | | 60 | 17.52 | 16.56 | 0.95 | 18.61 | 17.50 | 0.97 | 19.70 | 16.94 | 1.01 | 20.49 | 17.30 | 1.02 | 21.88 | 17.45 | 1.04 | 22.97 | 17.77 | 1.07 | | 65 | 17.51 | 16.68 | 0.96 | 18.60 | 17.63 | 0.99 | 19.69 | 17.06 | 1.02 | 20.47 | 17.42 | 1.04 | 21.86 | 17.57 | 1.06 | 22.95 | 17.90 | 1.08 | | 70 | 17.50 | 16.80 | 0.96 | 18.58 | 17.75 | 1.00 | 19.67 | 17.18 | 1.04 | 20.46 | 17.54 | 1.05 | 21.84 | 17.70 | 1.07 | 22.93 | 18.04 | 1.09 | | 75 | 17.08 | 16.52 | 1.02 | 18.16 | 17.48 | 1.06 | 19.24 | 16.94 | 1.10 | 20.03 | 17.32 | 1.11 | 21.41 | 17.48 | 1.13 | 22.50 | 17.83 | 1.15 | | 80 | 16.66 | 16.25 | 1.07 | 17.74 | 17.21 | 1.11 | 18.82 | 16.69 | 1.15 | 19.60 | 17.08 | 1.16 | 20.98 | 17.26 | 1.18 | 22.06 | 17.62 | 1.21 | | 85 | 16.24 | 15.95 | 1.13 | 17.32 | 16.92 | 1.16 | 18.40 | 16.44 | 1.21 | 19.17 | 16.82 | 1.22 | 20.55 | 17.03 | 1.24 | 21.63 | 17.40 | 1.27 | | 90 | 15.82 | 15.65 | 1.17 | 16.90 | 16.62 | 1.22 | 17.97 | 16.18 | 1.26 | 18.75 | 16.56 | 1.28 | 20.12 | 16.79 | 1.30 | 21.20 | 17.17 | 1.32 | | 95 | 15.37 | 15.29 | 1.23 | 16.44 | 16.36 | 1.27 | 17.51 | 16.04 | 1.31 | 18.00 | 16.20 | 1.33 | 19.65 | 16.70 | 1.36 | 20.72 | 17.09 | 1.39 | | 100 | 14.99 | 14.92 | 1.28 | 16.06 | 15.98 | 1.32 | 17.13 | 15.66 | 1.37 | 17.77 | 15.95 | 1.39 | 19.28 | 16.34 | 1.42 | 20.35 | 16.74 | 1.45 | | 105 | 14.62 | 14.55 | 1.33 | 15.69 | 15.61 | 1.38 | 16.76 | 15.29 | 1.43 | 17.53 | 15.70 | 1.45 | 18.90 | 15.98 | 1.48 | 19.97 | 16.39 | 1.50 | | 110 | 14.24 | 14.15 | 1.38 | 15.32 | 15.13 | 1.44 | 16.39 | 14.81 | 1.48 | 17.16 | 15.23 | 1.50 | 18.53 | 15.53 | 1.53 | 19.60 | 15.95 | 1.56 | | 115 | 13.87 | 13.73 | 1.44 | 14.94 | 14.71 | 1.48 | 16.01 | 14.42 | 1.54
 16.79 | 14.84 | 1.56 | 18.15 | 15.16 | 1.59 | 19.22 | 15.58 | 1.62 | | 118 | 13.65 | 13.58 | 1.47 | 14.72 | 14.62 | 1.52 | 15.79 | 14.34 | 1.58 | 16.56 | 14.77 | 1.60 | 17.93 | 15.11 | 1.63 | 19.00 | 15.54 | 1.65 | | 122 | 13.57 | 13.50 | 1.51 | 14.64 | 14.57 | 1.56 | 15.71 | 14.32 | 1.62 | 16.49 | 14.75 | 1.64 | 17.85 | 15.08 | 1.67 | 18.92 | 15.53 | 1.70 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA241A (KNSLA241A / KUSXA241A) Table 23: KSSLA241A (KNSLA241A / KUSXA241A) Cooling Capacities. | | | | | | | In | door A | \ir Tem | perat | ure (°F | DB / ° | F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|------|-------|---------|------|-------|---------|------| | Outdoor | 6 | 88 / 57 | | | 72 / 61 | | | 77 / 64 | i | | 80 / 67 | 1 | | 86 / 72 | | ! | 90 / 75 | | | Air Temp.
(°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 23.60 | 19.01 | 1.13 | 25.07 | 20.07 | 1.17 | 26.52 | 19.44 | 1.23 | 27.59 | 19.85 | 1.24 | 29.45 | 20.01 | 1.25 | 30.92 | 20.39 | 1.28 | | -0.4 | 23.59 | 19.12 | 1.14 | 25.05 | 20.20 | 1.18 | 26.51 | 19.56 | 1.24 | 27.57 | 19.97 | 1.25 | 29.44 | 20.14 | 1.27 | 30.91 | 20.52 | 1.29 | | 5 | 23.56 | 19.29 | 1.17 | 25.03 | 20.38 | 1.21 | 26.49 | 19.73 | 1.25 | 27.55 | 20.14 | 1.27 | 29.41 | 20.32 | 1.29 | 30.88 | 20.70 | 1.32 | | 10 | 23.55 | 19.44 | 1.18 | 25.01 | 20.53 | 1.23 | 26.47 | 19.88 | 1.27 | 27.52 | 20.30 | 1.29 | 29.40 | 20.47 | 1.31 | 30.85 | 20.86 | 1.33 | | 15 | 23.53 | 19.59 | 1.20 | 24.99 | 20.70 | 1.24 | 26.45 | 20.04 | 1.29 | 27.51 | 20.45 | 1.31 | 29.37 | 20.64 | 1.33 | 30.83 | 21.03 | 1.36 | | 20 | 23.51 | 19.74 | 1.23 | 24.97 | 20.86 | 1.27 | 26.43 | 20.20 | 1.31 | 27.48 | 20.62 | 1.32 | 29.35 | 20.79 | 1.35 | 30.81 | 21.18 | 1.38 | | 25 | 23.49 | 19.89 | 1.24 | 24.95 | 21.02 | 1.28 | 26.41 | 20.35 | 1.33 | 27.47 | 20.79 | 1.35 | 29.33 | 20.96 | 1.36 | 30.79 | 21.35 | 1.40 | | 30 | 23.47 | 20.04 | 1.25 | 24.93 | 21.18 | 1.29 | 26.39 | 20.52 | 1.35 | 27.44 | 20.94 | 1.36 | 29.31 | 21.12 | 1.39 | 30.76 | 21.52 | 1.42 | | 35 | 23.45 | 20.20 | 1.27 | 24.91 | 21.34 | 1.32 | 26.37 | 20.67 | 1.36 | 27.43 | 21.11 | 1.38 | 29.28 | 21.27 | 1.40 | 30.73 | 21.68 | 1.43 | | 40 | 23.44 | 20.36 | 1.29 | 24.89 | 21.50 | 1.33 | 26.35 | 20.82 | 1.39 | 27.40 | 21.26 | 1.40 | 29.25 | 21.44 | 1.43 | 30.72 | 21.85 | 1.46 | | 45 | 23.41 | 20.52 | 1.31 | 24.88 | 21.67 | 1.35 | 26.33 | 20.97 | 1.40 | 27.37 | 21.41 | 1.42 | 29.24 | 21.59 | 1.44 | 30.69 | 22.00 | 1.47 | | 50 | 23.40 | 20.65 | 1.32 | 24.85 | 21.82 | 1.38 | 26.31 | 21.14 | 1.42 | 27.36 | 21.58 | 1.44 | 29.21 | 21.76 | 1.47 | 30.67 | 22.17 | 1.50 | | 55 | 23.39 | 20.80 | 1.33 | 24.84 | 21.99 | 1.39 | 26.29 | 21.29 | 1.44 | 27.33 | 21.73 | 1.46 | 29.19 | 21.91 | 1.48 | 30.64 | 22.34 | 1.51 | | 60 | 23.36 | 20.96 | 1.36 | 24.81 | 22.14 | 1.40 | 26.27 | 21.44 | 1.46 | 27.32 | 21.90 | 1.47 | 29.17 | 22.08 | 1.50 | 30.63 | 22.49 | 1.54 | | 65 | 23.35 | 21.11 | 1.38 | 24.80 | 22.31 | 1.43 | 26.25 | 21.59 | 1.47 | 27.29 | 22.05 | 1.50 | 29.15 | 22.23 | 1.53 | 30.60 | 22.66 | 1.55 | | 70 | 23.33 | 21.26 | 1.39 | 24.77 | 22.46 | 1.44 | 26.23 | 21.75 | 1.50 | 27.28 | 22.20 | 1.51 | 29.12 | 22.40 | 1.54 | 30.57 | 22.82 | 1.57 | | 75 | 22.77 | 20.91 | 1.47 | 24.21 | 22.12 | 1.53 | 25.65 | 21.44 | 1.58 | 26.71 | 21.91 | 1.59 | 28.55 | 22.12 | 1.62 | 30.00 | 22.57 | 1.66 | | 80 | 22.21 | 20.56 | 1.54 | 23.65 | 21.78 | 1.59 | 25.09 | 21.12 | 1.66 | 26.13 | 21.61 | 1.67 | 27.97 | 21.84 | 1.70 | 29.41 | 22.29 | 1.74 | | 85 | 21.65 | 20.18 | 1.62 | 23.09 | 21.41 | 1.67 | 24.53 | 20.80 | 1.74 | 25.56 | 21.29 | 1.76 | 27.40 | 21.55 | 1.78 | 28.84 | 22.02 | 1.82 | | 90 | 21.09 | 19.80 | 1.69 | 22.53 | 21.03 | 1.76 | 23.96 | 20.47 | 1.81 | 25.00 | 20.96 | 1.84 | 26.83 | 21.24 | 1.88 | 28.27 | 21.73 | 1.91 | | 95 | 20.49 | 19.59 | 1.77 | 21.92 | 20.85 | 1.82 | 23.35 | 20.30 | 1.89 | 24.00 | 20.50 | 1.92 | 26.20 | 21.14 | 1.96 | 27.63 | 21.62 | 2.00 | | 100 | 19.99 | 19.07 | 1.84 | 21.41 | 20.32 | 1.91 | 22.84 | 19.82 | 1.97 | 23.69 | 20.18 | 2.00 | 25.71 | 20.68 | 2.04 | 27.13 | 21.18 | 2.08 | | 105 | 19.49 | 18.54 | 1.92 | 20.92 | 19.79 | 1.99 | 22.35 | 19.35 | 2.06 | 23.37 | 19.86 | 2.08 | 25.20 | 20.23 | 2.12 | 26.63 | 20.74 | 2.17 | | 110 | 18.99 | 17.90 | 1.99 | 20.43 | 19.15 | 2.07 | 21.85 | 18.74 | 2.14 | 22.88 | 19.27 | 2.17 | 24.71 | 19.65 | 2.21 | 26.13 | 20.18 | 2.25 | | 115 | 18.49 | 17.37 | 2.07 | 19.92 | 18.62 | 2.14 | 21.35 | 18.25 | 2.22 | 22.39 | 18.78 | 2.25 | 24.20 | 19.18 | 2.29 | 25.63 | 19.71 | 2.33 | | 118 | 18.20 | 17.25 | 2.11 | 19.63 | 18.50 | 2.19 | 21.05 | 18.15 | 2.27 | 22.08 | 18.69 | 2.30 | 23.91 | 19.12 | 2.34 | 25.33 | 19.66 | 2.38 | | 122 | 18.09 | 17.20 | 2.18 | 19.52 | 18.47 | 2.25 | 20.95 | 18.12 | 2.33 | 21.99 | 18.66 | 2.36 | 23.80 | 19.09 | 2.41 | 25.23 | 19.65 | 2.45 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. Table 24: KSSLA301A (KNSLA301A / KUSXA301A) Cooling Capacities. | | | | | | | ln | door A | Air Tem | perat | ure (°F | DB/ | F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|------|-------|---------|------|-------|---------|------| | Outdoor
Air Temp. | (| 88 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | (°F DB) | тс | SHC | PI | | -4 | 29.50 | 24.11 | 1.31 | 31.33 | 25.46 | 1.36 | 33.15 | 24.65 | 1.42 | 34.48 | 25.17 | 1.43 | 36.82 | 25.38 | 1.45 | 38.65 | 25.87 | 1.48 | | -0.4 | 29.48 | 24.25 | 1.32 | 31.32 | 25.61 | 1.37 | 33.13 | 24.81 | 1.43 | 34.47 | 25.33 | 1.45 | 36.80 | 25.54 | 1.47 | 38.63 | 26.02 | 1.50 | | 5 | 29.45 | 24.46 | 1.36 | 31.28 | 25.85 | 1.40 | 33.12 | 25.02 | 1.45 | 34.43 | 25.54 | 1.47 | 36.77 | 25.77 | 1.50 | 38.60 | 26.25 | 1.53 | | 10 | 29.43 | 24.65 | 1.37 | 31.27 | 26.04 | 1.42 | 33.08 | 25.21 | 1.47 | 34.40 | 25.75 | 1.50 | 36.75 | 25.96 | 1.51 | 38.57 | 26.46 | 1.54 | | 15 | 29.42 | 24.84 | 1.39 | 31.23 | 26.25 | 1.43 | 33.07 | 25.42 | 1.50 | 34.38 | 25.94 | 1.51 | 36.72 | 26.17 | 1.54 | 38.53 | 26.67 | 1.58 | | 20 | 29.38 | 25.04 | 1.42 | 31.22 | 26.46 | 1.47 | 33.03 | 25.61 | 1.51 | 34.35 | 26.15 | 1.53 | 36.68 | 26.37 | 1.56 | 38.52 | 26.87 | 1.59 | | 25 | 29.37 | 25.23 | 1.43 | 31.18 | 26.65 | 1.48 | 33.02 | 25.81 | 1.54 | 34.33 | 26.37 | 1.56 | 36.67 | 26.58 | 1.58 | 38.48 | 27.08 | 1.62 | | 30 | 29.33 | 25.42 | 1.45 | 31.17 | 26.87 | 1.50 | 32.98 | 26.02 | 1.56 | 34.30 | 26.56 | 1.58 | 36.63 | 26.79 | 1.61 | 38.45 | 27.29 | 1.64 | | 35 | 29.32 | 25.61 | 1.47 | 31.13 | 27.06 | 1.53 | 32.97 | 26.21 | 1.58 | 34.28 | 26.77 | 1.59 | 36.60 | 26.98 | 1.62 | 38.42 | 27.50 | 1.65 | | 40 | 29.30 | 25.83 | 1.50 | 31.12 | 27.27 | 1.54 | 32.93 | 26.40 | 1.61 | 34.25 | 26.96 | 1.62 | 36.57 | 27.19 | 1.65 | 38.40 | 27.71 | 1.69 | | 45 | 29.27 | 26.02 | 1.51 | 31.10 | 27.48 | 1.56 | 32.92 | 26.60 | 1.62 | 34.22 | 27.16 | 1.64 | 36.55 | 27.39 | 1.67 | 38.37 | 27.91 | 1.70 | | 50 | 29.25 | 26.19 | 1.53 | 31.07 | 27.68 | 1.59 | 32.88 | 26.81 | 1.64 | 34.20 | 27.37 | 1.67 | 36.52 | 27.60 | 1.70 | 38.33 | 28.12 | 1.73 | | 55 | 29.23 | 26.39 | 1.54 | 31.05 | 27.89 | 1.61 | 32.87 | 27.00 | 1.67 | 34.17 | 27.56 | 1.69 | 36.48 | 27.79 | 1.72 | 38.30 | 28.33 | 1.75 | | 60 | 29.20 | 26.58 | 1.58 | 31.02 | 28.08 | 1.62 | 32.83 | 27.19 | 1.69 | 34.15 | 27.77 | 1.70 | 36.47 | 28.00 | 1.73 | 38.28 | 28.52 | 1.78 | | 65 | 29.18 | 26.77 | 1.59 | 31.00 | 28.29 | 1.65 | 32.82 | 27.39 | 1.70 | 34.12 | 27.96 | 1.73 | 36.43 | 28.20 | 1.77 | 38.25 | 28.73 | 1.80 | | 70 | 29.17 | 26.96 | 1.61 | 30.97 | 28.48 | 1.67 | 32.78 | 27.58 | 1.73 | 34.10 | 28.16 | 1.75 | 36.40 | 28.41 | 1.78 | 38.22 | 28.95 | 1.81 | | 75 | 28.47 | 26.52 | 1.70 | 30.27 | 28.06 | 1.77 | 32.07 | 27.19 | 1.83 | 33.38 | 27.79 | 1.84 | 35.68 | 28.06 | 1.88 | 37.50 | 28.62 | 1.92 | | 80 | 27.77 | 26.08 | 1.78 | 29.57 | 27.62 | 1.84 | 31.37 | 26.79 | 1.92 | 32.67 | 27.41 | 1.94 | 34.97 | 27.69 | 1.97 | 36.77 | 28.27 | 2.02 | | 85 | 27.07 | 25.60 | 1.88 | 28.87 | 27.16 | 1.94 | 30.67 | 26.39 | 2.02 | 31.95 | 27.00 | 2.03 | 34.25 | 27.33 | 2.06 | 36.05 | 27.93 | 2.11 | | 90 | 26.37 | 25.11 | 1.95 | 28.17 | 26.67 | 2.03 | 29.95 | 25.96 | 2.10 | 31.25 | 26.58 | 2.13 | 33.53 | 26.94 | 2.17 | 35.33 | 27.56 | 2.21 | | 95 | 25.62 | 24.84 | 2.05 | 27.40 | 26.44 | 2.11 | 29.18 | 25.75 | 2.19 | 30.00 | 26.00 | 2.22 | 32.75 | 26.81 | 2.27 | 34.53 | 27.43 | 2.32 | | 100 | 24.98 | 24.19 | 2.13 | 26.77 | 25.77 | 2.21 | 28.55 | 25.13 | 2.29 | 29.62 | 25.60 | 2.32 | 32.13 | 26.23 | 2.36 | 33.92 | 26.87 | 2.41 | | 105 | 24.37 | 23.52 | 2.22 | 26.15 | 25.09 | 2.30 | 27.93 | 24.54 | 2.38 | 29.22 | 25.19 | 2.41 |
31.50 | 25.65 | 2.46 | 33.28 | 26.31 | 2.51 | | 110 | 23.73 | 22.71 | 2.30 | 25.53 | 24.29 | 2.40 | 27.32 | 23.77 | 2.47 | 28.60 | 24.44 | 2.51 | 30.88 | 24.92 | 2.55 | 32.67 | 25.60 | 2.60 | | 115 | 23.12 | 22.03 | 2.40 | 24.90 | 23.61 | 2.47 | 26.68 | 23.15 | 2.57 | 27.98 | 23.82 | 2.60 | 30.25 | 24.32 | 2.65 | 32.03 | 25.00 | 2.70 | | 118 | 22.75 | 21.88 | 2.44 | 24.53 | 23.46 | 2.54 | 26.32 | 23.01 | 2.63 | 27.60 | 23.71 | 2.66 | 29.88 | 24.25 | 2.71 | 31.67 | 24.94 | 2.76 | | 122 | 22.62 | 21.82 | 2.52 | 24.40 | 23.42 | 2.60 | 26.18 | 22.98 | 2.70 | 27.48 | 23.67 | 2.73 | 29.75 | 24.21 | 2.79 | 31.53 | 24.92 | 2.84 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. On not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. ### KSSLA361A (KNSLA361A / KUSXA361A) Table 25: KSSLA361A (KNSLA361A / KUSXA361A) Cooling Capacities. | | | | | | | ln | door A | Air Tem | perat | ure (°F | DB/ | °F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|-------|-------|---------|------|-------|---------|------| | Outdoor | (| 88 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | Air Temp.
(°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 32.45 | 25.60 | 1.49 | 34.47 | 27.03 | 1.55 | 36.47 | 26.17 | 1.62 | 37.93 | 26.72 | 1.64 | 40.50 | 26.95 | 1.66 | 42.52 | 27.46 | 1.69 | | -0.4 | 32.43 | 25.74 | 1.51 | 34.45 | 27.19 | 1.57 | 36.45 | 26.33 | 1.64 | 37.91 | 26.88 | 1.66 | 40.48 | 27.11 | 1.67 | 42.50 | 27.62 | 1.71 | | 5 | 32.40 | 25.96 | 1.55 | 34.41 | 27.44 | 1.60 | 36.43 | 26.56 | 1.66 | 37.88 | 27.11 | 1.67 | 40.44 | 27.35 | 1.71 | 42.46 | 27.87 | 1.75 | | 10 | 32.38 | 26.17 | 1.57 | 34.39 | 27.64 | 1.62 | 36.39 | 26.76 | 1.67 | 37.84 | 27.33 | 1.71 | 40.43 | 27.56 | 1.73 | 42.42 | 28.09 | 1.76 | | 15 | 32.36 | 26.37 | 1.58 | 34.36 | 27.87 | 1.64 | 36.37 | 26.99 | 1.71 | 37.82 | 27.54 | 1.73 | 40.39 | 27.78 | 1.76 | 42.39 | 28.32 | 1.80 | | 20 | 32.32 | 26.58 | 1.62 | 34.34 | 28.09 | 1.67 | 36.34 | 27.19 | 1.73 | 37.79 | 27.76 | 1.75 | 40.35 | 27.99 | 1.78 | 42.37 | 28.52 | 1.82 | | 25 | 32.30 | 26.78 | 1.64 | 34.30 | 28.30 | 1.69 | 36.32 | 27.40 | 1.76 | 37.77 | 27.99 | 1.78 | 40.33 | 28.21 | 1.80 | 42.33 | 28.74 | 1.85 | | 30 | 32.27 | 26.99 | 1.66 | 34.28 | 28.52 | 1.71 | 36.28 | 27.62 | 1.78 | 37.73 | 28.19 | 1.80 | 40.30 | 28.44 | 1.84 | 42.30 | 28.97 | 1.87 | | 35 | 32.25 | 27.19 | 1.67 | 34.25 | 28.72 | 1.75 | 36.26 | 27.82 | 1.80 | 37.71 | 28.42 | 1.82 | 40.26 | 28.64 | 1.85 | 42.26 | 29.19 | 1.89 | | 40 | 32.23 | 27.42 | 1.71 | 34.23 | 28.95 | 1.76 | 36.23 | 28.03 | 1.84 | 37.68 | 28.62 | 1.85 | 40.22 | 28.87 | 1.89 | 42.24 | 29.42 | 1.93 | | 45 | 32.19 | 27.62 | 1.73 | 34.21 | 29.17 | 1.78 | 36.21 | 28.23 | 1.85 | 37.64 | 28.83 | 1.87 | 40.21 | 29.07 | 1.91 | 42.20 | 29.62 | 1.94 | | 50 | 32.18 | 27.80 | 1.75 | 34.17 | 29.38 | 1.82 | 36.17 | 28.46 | 1.87 | 37.62 | 29.05 | 1.91 | 40.17 | 29.30 | 1.94 | 42.17 | 29.85 | 1.98 | | 55 | 32.16 | 28.01 | 1.76 | 34.16 | 29.60 | 1.84 | 36.15 | 28.66 | 1.91 | 37.58 | 29.26 | 1.93 | 40.13 | 29.50 | 1.96 | 42.13 | 30.07 | 2.00 | | 60 | 32.12 | 28.21 | 1.80 | 34.12 | 29.81 | 1.85 | 36.12 | 28.87 | 1.93 | 37.57 | 29.48 | 1.94 | 40.11 | 29.73 | 1.98 | 42.11 | 30.28 | 2.03 | | 65 | 32.10 | 28.42 | 1.82 | 34.10 | 30.03 | 1.89 | 36.10 | 29.07 | 1.94 | 37.53 | 29.69 | 1.98 | 40.08 | 29.93 | 2.02 | 42.08 | 30.50 | 2.05 | | 70 | 32.08 | 28.62 | 1.84 | 34.06 | 30.24 | 1.91 | 36.06 | 29.28 | 1.98 | 37.51 | 29.89 | 2.00 | 40.04 | 30.16 | 2.03 | 42.04 | 30.73 | 2.07 | | 75 | 31.31 | 28.15 | 1.94 | 33.29 | 29.79 | 2.02 | 35.27 | 28.87 | 2.09 | 36.72 | 29.50 | 2.11 | 39.25 | 29.79 | 2.14 | 41.25 | 30.38 | 2.20 | | 80 | 30.54 | 27.68 | 2.03 | 32.52 | 29.32 | 2.11 | 34.50 | 28.44 | 2.20 | 35.93 | 29.09 | 2.21 | 38.46 | 29.40 | 2.25 | 40.44 | 30.01 | 2.30 | | 85 | 29.77 | 27.17 | 2.14 | 31.75 | 28.83 | 2.21 | 33.73 | 28.01 | 2.30 | 35.15 | 28.66 | 2.32 | 37.68 | 29.01 | 2.36 | 39.66 | 29.64 | 2.41 | | 90 | 29.00 | 26.66 | 2.23 | 30.98 | 28.32 | 2.32 | 32.95 | 27.56 | 2.39 | 34.38 | 28.21 | 2.43 | 36.89 | 28.60 | 2.48 | 38.87 | 29.26 | 2.52 | | 95 | 28.18 | 26.37 | 2.34 | 30.14 | 28.07 | 2.41 | 32.10 | 27.33 | 2.50 | 33.00 | 27.60 | 2.54 | 36.03 | 28.46 | 2.59 | 37.99 | 29.11 | 2.65 | | 100 | 27.48 | 25.68 | 2.43 | 29.44 | 27.35 | 2.52 | 31.41 | 26.68 | 2.61 | 32.58 | 27.17 | 2.65 | 35.35 | 27.85 | 2.70 | 37.31 | 28.52 | 2.75 | | 105 | 26.80 | 24.96 | 2.54 | 28.77 | 26.64 | 2.63 | 30.73 | 26.05 | 2.72 | 32.14 | 26.74 | 2.75 | 34.65 | 27.23 | 2.81 | 36.61 | 27.93 | 2.86 | | 110 | 26.11 | 24.10 | 2.63 | 28.09 | 25.78 | 2.74 | 30.05 | 25.23 | 2.83 | 31.46 | 25.94 | 2.86 | 33.97 | 26.46 | 2.92 | 35.93 | 27.17 | 2.97 | | 115 | 25.43 | 23.39 | 2.74 | 27.39 | 25.06 | 2.83 | 29.35 | 24.57 | 2.93 | 30.78 | 25.29 | 2.97 | 33.28 | 25.82 | 3.02 | 35.24 | 26.54 | 3.08 | | 118 | 25.03 | 23.22 | 2.79 | 26.99 | 24.90 | 2.90 | 28.95 | 24.43 | 3.01 | 30.36 | 25.17 | 3.04 | 32.87 | 25.74 | 3.10 | 34.83 | 26.48 | 3.15 | | 122 | 24.88 | 23.16 | 2.88 | 26.84 | 24.86 | 2.97 | 28.80 | 24.39 | 3.08 | 30.23 | 25.13 | 3.11 | 32.73 | 25.70 | 3.19 | 34.69 | 26.46 | 3.24 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. \bigcirc Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. Table 26: KSSLA421A (KNSLB421A / KUSXA422A) Cooling Capacities. | | | | | | | ln | door A | Air Tem | perat | ure (°F | DB/ | F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|------|-------|---------|------|-------|---------|------| | Outdoor
Air Temp. | 6 | 88 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | (°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 41.30 | 31.07 | 1.98 | 43.87 | 32.81 | 2.05 | 46.41 | 31.76 | 2.14 | 48.28 | 32.43 | 2.17 | 51.54 | 32.71 | 2.19 | 54.11 | 33.33 | 2.24 | | -0.4 | 41.28 | 31.24 | 2.00 | 43.84 | 33.00 | 2.07 | 46.39 | 31.96 | 2.17 | 48.25 | 32.63 | 2.19 | 51.52 | 32.90 | 2.22 | 54.09 | 33.52 | 2.26 | | 5 | 41.23 | 31.51 | 2.05 | 43.80 | 33.30 | 2.12 | 46.36 | 32.23 | 2.19 | 48.21 | 32.90 | 2.22 | 51.47 | 33.20 | 2.26 | 54.04 | 33.82 | 2.31 | | 10 | 41.21 | 31.76 | 2.07 | 43.77 | 33.55 | 2.14 | 46.32 | 32.48 | 2.22 | 48.16 | 33.18 | 2.26 | 51.45 | 33.45 | 2.29 | 53.99 | 34.10 | 2.34 | | 15 | 41.18 | 32.01 | 2.10 | 43.73 | 33.82 | 2.17 | 46.29 | 32.76 | 2.26 | 48.14 | 33.43 | 2.29 | 51.40 | 33.72 | 2.34 | 53.95 | 34.37 | 2.38 | | 20 | 41.14 | 32.26 | 2.14 | 43.70 | 34.10 | 2.22 | 46.25 | 33.00 | 2.29 | 48.09 | 33.70 | 2.31 | 51.36 | 33.97 | 2.36 | 53.92 | 34.62 | 2.41 | | 25 | 41.11 | 32.51 | 2.17 | 43.66 | 34.34 | 2.24 | 46.22 | 33.25 | 2.34 | 48.07 | 33.97 | 2.36 | 51.33 | 34.24 | 2.38 | 53.88 | 34.89 | 2.45 | | 30 | 41.07 | 32.76 | 2.19 | 43.63 | 34.62 | 2.26 | 46.18 | 33.52 | 2.36 | 48.02 | 34.22 | 2.38 | 51.29 | 34.52 | 2.43 | 53.83 | 35.16 | 2.48 | | 35 | 41.04 | 33.00 | 2.22 | 43.59 | 34.86 | 2.31 | 46.15 | 33.77 | 2.38 | 48.00 | 34.49 | 2.41 | 51.24 | 34.77 | 2.45 | 53.78 | 35.44 | 2.50 | | 40 | 41.02 | 33.28 | 2.26 | 43.56 | 35.14 | 2.34 | 46.11 | 34.02 | 2.43 | 47.95 | 34.74 | 2.45 | 51.19 | 35.04 | 2.50 | 53.76 | 35.71 | 2.55 | | 45 | 40.97 | 33.52 | 2.29 | 43.54 | 35.41 | 2.36 | 46.08 | 34.27 | 2.45 | 47.90 | 34.99 | 2.48 | 51.17 | 35.29 | 2.53 | 53.71 | 35.96 | 2.57 | | 50 | 40.95 | 33.75 | 2.31 | 43.49 | 35.66 | 2.41 | 46.04 | 34.54 | 2.48 | 47.88 | 35.26 | 2.53 | 51.12 | 35.56 | 2.57 | 53.67 | 36.23 | 2.62 | | 55 | 40.93 | 34.00 | 2.34 | 43.47 | 35.93 | 2.43 | 46.01 | 34.79 | 2.53 | 47.83 | 35.51 | 2.55 | 51.08 | 35.81 | 2.60 | 53.62 | 36.50 | 2.65 | | 60 | 40.88 | 34.24 | 2.38 | 43.42 | 36.18 | 2.45 | 45.97 | 35.04 | 2.55 | 47.81 | 35.78 | 2.57 | 51.05 | 36.08 | 2.62 | 53.60 | 36.75 | 2.69 | | 65 | 40.86 | 34.49 | 2.41 | 43.40 | 36.45 | 2.50 | 45.94 | 35.29 | 2.57 | 47.76 | 36.03 | 2.62 | 51.01 | 36.33 | 2.67 | 53.55 | 37.02 | 2.72 | | 70 | 40.83 | 34.74 | 2.43 | 43.35 | 36.70 | 2.53 | 45.90 | 35.53 | 2.62 | 47.74 | 36.28 | 2.65 | 50.96 | 36.60 | 2.69 | 53.50 | 37.30 | 2.74 | | 75 | 39.85 | 34.17 | 2.57 | 42.37 | 36.16 | 2.67 | 44.89 | 35.04 | 2.76 | 46.74 | 35.81 | 2.79 | 49.96 | 36.16 | 2.84 | 52.50 | 36.87 | 2.91 | | 80 | 38.87 | 33.60 | 2.69 | 41.39 | 35.58 | 2.79 | 43.91 | 34.52 | 2.91 | 45.73 | 35.31 | 2.93 | 48.95 | 35.68 | 2.98 | 51.47 | 36.43 | 3.05 | | 85 | 37.89 | 32.98 | 2.84 | 40.41 | 34.99 | 2.93 | 42.93 | 34.00 | 3.05 | 44.73 | 34.79 | 3.07 | 47.95 | 35.21 | 3.12 | 50.47 | 35.98 | 3.19 | | 90 | 36.91 | 32.36 | 2.95 | 39.43 | 34.37 | 3.07 | 41.93 | 33.45 | 3.17 | 43.75 | 34.24 | 3.22 | 46.95 | 34.72 | 3.29 | 49.47 | 35.51 | 3.34 | | 95 | 35.86 | 32.01 | 3.10 | 38.36 | 34.07 | 3.19 | 40.86 | 33.18 | 3.31 | 42.00 | 33.50 | 3.36 |
45.85 | 34.54 | 3.43 | 48.35 | 35.34 | 3.50 | | 100 | 34.98 | 31.17 | 3.22 | 37.47 | 33.20 | 3.34 | 39.97 | 32.38 | 3.46 | 41.46 | 32.98 | 3.50 | 44.99 | 33.80 | 3.57 | 47.48 | 34.62 | 3.65 | | 105 | 34.11 | 30.30 | 3.36 | 36.61 | 32.33 | 3.48 | 39.11 | 31.61 | 3.60 | 40.90 | 32.46 | 3.65 | 44.10 | 33.05 | 3.72 | 46.60 | 33.90 | 3.79 | | 110 | 33.23 | 29.26 | 3.48 | 35.75 | 31.29 | 3.62 | 38.24 | 30.62 | 3.74 | 40.04 | 31.49 | 3.79 | 43.24 | 32.11 | 3.86 | 45.73 | 32.98 | 3.93 | | 115 | 32.36 | 28.39 | 3.62 | 34.86 | 30.42 | 3.74 | 37.36 | 29.83 | 3.88 | 39.18 | 30.70 | 3.93 | 42.35 | 31.34 | 4.00 | 44.85 | 32.21 | 4.07 | | 118 | 31.85 | 28.19 | 3.69 | 34.35 | 30.22 | 3.84 | 36.84 | 29.65 | 3.98 | 38.64 | 30.55 | 4.03 | 41.84 | 31.24 | 4.10 | 44.33 | 32.14 | 4.17 | | 122 | 31.66 | 28.12 | 3.81 | 34.16 | 30.17 | 3.93 | 36.66 | 29.60 | 4.07 | 38.48 | 30.50 | 4.12 | 41.65 | 31.19 | 4.22 | 44.15 | 32.11 | 4.29 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. \bigcirc Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. ### KSSLA481A (KNSLB481A / KUSXA482A) Table 27: KSSLA481A (KNSLB481A / KUSXA482A) Cooling Capacities. | Outdoor
Air Temp. | | 68 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | 1 | |----------------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------| | (°F DB) | тс | SHC | PI | | -4 | 45.23 | 34.22 | 2.20 | 48.04 | 36.13 | 2.28 | 50.83 | 34.99 | 2.39 | 52.87 | 35.72 | 2.41 | 56.45 | 36.03 | 2.44 | 59.26 | 36.71 | 2.49 | | -0.4 | 45.21 | 34.41 | 2.23 | 48.02 | 36.35 | 2.31 | 50.80 | 35.21 | 2.41 | 52.85 | 35.94 | 2.44 | 56.43 | 36.24 | 2.47 | 59.24 | 36.93 | 2.52 | | 5 | 45.16 | 34.71 | 2.28 | 47.97 | 36.68 | 2.36 | 50.78 | 35.51 | 2.44 | 52.80 | 36.24 | 2.47 | 56.38 | 36.57 | 2.52 | 59.19 | 37.26 | 2.57 | | 10 | 45.13 | 34.99 | 2.31 | 47.94 | 36.95 | 2.39 | 50.73 | 35.78 | 2.47 | 52.75 | 36.54 | 2.52 | 56.35 | 36.85 | 2.55 | 59.14 | 37.56 | 2.60 | | 15 | 45.11 | 35.26 | 2.33 | 47.89 | 37.26 | 2.41 | 50.70 | 36.08 | 2.52 | 52.72 | 36.82 | 2.55 | 56.30 | 37.15 | 2.60 | 59.08 | 37.86 | 2.65 | | 20 | 45.05 | 35.53 | 2.39 | 47.87 | 37.56 | 2.47 | 50.65 | 36.35 | 2.55 | 52.67 | 37.12 | 2.57 | 56.25 | 37.42 | 2.63 | 59.06 | 38.13 | 2.68 | | 25 | 45.03 | 35.81 | 2.41 | 47.81 | 37.83 | 2.49 | 50.63 | 36.63 | 2.60 | 52.64 | 37.42 | 2.63 | 56.22 | 37.72 | 2.65 | 59.01 | 38.43 | 2.73 | | 30 | 44.98 | 36.08 | 2.44 | 47.79 | 38.13 | 2.52 | 50.57 | 36.93 | 2.63 | 52.59 | 37.69 | 2.65 | 56.17 | 38.02 | 2.71 | 58.96 | 38.73 | 2.76 | | 35 | 44.95 | 36.35 | 2.47 | 47.74 | 38.40 | 2.57 | 50.55 | 37.20 | 2.65 | 52.57 | 37.99 | 2.68 | 56.12 | 38.29 | 2.73 | 58.91 | 39.03 | 2.78 | | 40 | 44.93 | 36.65 | 2.52 | 47.71 | 38.70 | 2.60 | 50.50 | 37.47 | 2.71 | 52.52 | 38.27 | 2.73 | 56.07 | 38.59 | 2.78 | 58.88 | 39.33 | 2.84 | | 45 | 44.88 | 36.93 | 2.55 | 47.69 | 39.00 | 2.63 | 50.47 | 37.75 | 2.73 | 52.47 | 38.54 | 2.76 | 56.04 | 38.87 | 2.81 | 58.83 | 39.61 | 2.86 | | 50 | 44.85 | 37.17 | 2.57 | 47.64 | 39.28 | 2.68 | 50.42 | 38.05 | 2.76 | 52.44 | 38.84 | 2.81 | 55.99 | 39.17 | 2.86 | 58.78 | 39.91 | 2.92 | | 55 | 44.82 | 37.45 | 2.60 | 47.61 | 39.58 | 2.71 | 50.40 | 38.32 | 2.81 | 52.39 | 39.11 | 2.84 | 55.94 | 39.44 | 2.89 | 58.73 | 40.21 | 2.94 | | 60 | 44.77 | 37.72 | 2.65 | 47.56 | 39.85 | 2.73 | 50.34 | 38.59 | 2.84 | 52.36 | 39.41 | 2.86 | 55.92 | 39.74 | 2.92 | 58.70 | 40.48 | 3.00 | | 65 | 44.75 | 37.99 | 2.68 | 47.53 | 40.15 | 2.78 | 50.32 | 38.87 | 2.86 | 52.31 | 39.69 | 2.92 | 55.86 | 40.02 | 2.97 | 58.65 | 40.78 | 3.02 | | 70 | 44.72 | 38.27 | 2.71 | 47.48 | 40.43 | 2.81 | 50.27 | 39.14 | 2.92 | 52.29 | 39.96 | 2.94 | 55.81 | 40.32 | 3.00 | 58.60 | 41.08 | 3.05 | | 75 | 43.65 | 37.64 | 2.86 | 46.41 | 39.82 | 2.97 | 49.17 | 38.59 | 3.08 | 51.19 | 39.44 | 3.10 | 54.71 | 39.82 | 3.16 | 57.50 | 40.62 | 3.24 | | 80 | 42.58 | 37.01 | 3.00 | 45.34 | 39.20 | 3.10 | 48.10 | 38.02 | 3.24 | 50.09 | 38.90 | 3.26 | 53.62 | 39.31 | 3.32 | 56.38 | 40.13 | 3.40 | | 85 | 41.50 | 36.33 | 3.16 | 44.26 | 38.54 | 3.26 | 47.02 | 37.45 | 3.40 | 48.99 | 38.32 | 3.42 | 52.52 | 38.79 | 3.47 | 55.28 | 39.63 | 3.55 | | 90 | 40.43 | 35.64 | 3.29 | 43.19 | 37.86 | 3.42 | 45.92 | 36.85 | 3.53 | 47.92 | 37.72 | 3.58 | 51.42 | 38.24 | 3.66 | 54.18 | 39.11 | 3.71 | | 95 | 39.28 | 35.26 | 3.45 | 42.01 | 37.53 | 3.55 | 44.75 | 36.54 | 3.69 | 46.00 | 36.90 | 3.74 | 50.22 | 38.05 | 3.82 | 52.95 | 38.92 | 3.90 | | 100 | 38.31 | 34.33 | 3.58 | 41.04 | 36.57 | 3.71 | 43.78 | 35.67 | 3.85 | 45.41 | 36.33 | 3.90 | 49.27 | 37.23 | 3.98 | 52.01 | 38.13 | 4.06 | | 105 | 37.36 | 33.37 | 3.74 | 40.10 | 35.62 | 3.87 | 42.83 | 34.82 | 4.01 | 44.80 | 35.75 | 4.06 | 48.30 | 36.41 | 4.14 | 51.03 | 37.34 | 4.22 | | 110 | 36.39 | 32.23 | 3.87 | 39.15 | 34.47 | 4.03 | 41.89 | 33.73 | 4.16 | 43.85 | 34.69 | 4.22 | 47.35 | 35.37 | 4.30 | 50.09 | 36.33 | 4.38 | | 115 | 35.45 | 31.27 | 4.03 | 38.18 | 33.51 | 4.16 | 40.91 | 32.85 | 4.32 | 42.91 | 33.81 | 4.38 | 46.38 | 34.52 | 4.46 | 49.12 | 35.48 | 4.54 | | 118 | 34.88 | 31.05 | 4.11 | 37.62 | 33.29 | 4.27 | 40.35 | 32.66 | 4.43 | 42.32 | 33.65 | 4.48 | 45.82 | 34.41 | 4.56 | 48.56 | 35.40 | 4.64 | | 122 | 34.68 | 30.97 | 4.24 | 37.41 | 33.24 | 4.38 | 40.15 | 32.61 | 4.54 | 42.14 | 33.59 | 4.59 | 45.62 | 34.36 | 4.69 | 48.35 | 35.37 | 4.77 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. Do not extrapolate. Capacity as rated: 0 ft. above sea lew with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA121A (KNSLB121A / KUSXA121A) Table 28: KSSLA121A (KNSLB121A / KUSXA121A) Maximum Cooling Capacities. | | | | | | | ln | door A | ir Tem | perat | ure (°F | DB/ | F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|------|-------|---------|------|-------|---------|------| | Outdoor
Air Temp. | 6 | 88 / 57 | | | 72 / 61 | | | 77 / 64 | ı | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | (°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 17.20 | 14.56 | 1.16 | 18.28 | 15.37 | 1.20 | 19.34 | 14.89 | 1.24 | 20.11 | 15.20 | 1.25 | 21.48 | 15.33 | 1.28 | 22.55 | 15.62 | 1.30 | | -0.4 | 17.20 | 14.64 | 1.16 | 18.26 | 15.46 | 1.21 | 19.33 | 14.98 | 1.25 | 20.10 | 15.29 | 1.27 | 21.47 | 15.42 | 1.29 | 22.54 | 15.71 | 1.32 | | 5 | 17.18 | 14.77 | 1.18 | 18.25 | 15.60 | 1.23 | 19.31 | 15.10 | 1.27 | 20.08 | 15.43 | 1.29 | 21.45 | 15.56 | 1.31 | 22.52 | 15.85 | 1.34 | | 10 | 17.17 | 14.89 | 1.20 | 18.23 | 15.73 | 1.25 | 19.30 | 15.23 | 1.29 | 20.07 | 15.55 | 1.31 | 21.43 | 15.68 | 1.33 | 22.50 | 15.98 | 1.36 | | 15 | 17.15 | 15.00 | 1.22 | 18.22 | 15.85 | 1.27 | 19.29 | 15.35 | 1.31 | 20.05 | 15.67 | 1.33 | 21.42 | 15.80 | 1.35 | 22.48 | 16.10 | 1.38 | | 20 | 17.14 | 15.12 | 1.24 | 18.21 | 15.97 | 1.29 | 19.27 | 15.46 | 1.33 | 20.04 | 15.79 | 1.35 | 21.40 | 15.93 | 1.37 | 22.47 | 16.22 | 1.40 | | 25 | 17.13 | 15.24 | 1.25 | 18.19 | 16.10 | 1.30 | 19.26 | 15.59 | 1.35 | 20.03 | 15.92 | 1.36 | 21.38 | 16.05 | 1.39 | 22.45 | 16.35 | 1.42 | | 30 | 17.12 | 15.36 | 1.27 | 18.18 | 16.22 | 1.32 | 19.24 | 15.71 | 1.37 | 20.01 | 16.03 | 1.38 | 21.37 | 16.17 | 1.41 | 22.43 | 16.48 | 1.44 | | 35 | 17.10 | 15.47 | 1.29 | 18.16 | 16.34 | 1.33 | 19.23 | 15.83 | 1.39 | 19.99 | 16.16 | 1.40 | 21.35 | 16.30 | 1.43 | 22.41 | 16.60 | 1.46 | | 40 | 17.09 | 15.59 | 1.31 | 18.15 | 16.47 | 1.35 | 19.21 | 15.94 | 1.40 | 19.98 | 16.28 | 1.42 | 21.34 | 16.41 | 1.45 | 22.40 | 16.73 | 1.48 | | 45 | 17.08 | 15.71 | 1.33 | 18.14 | 16.60 | 1.38 | 19.20 | 16.06 | 1.42 | 19.96 | 16.41 | 1.44 | 21.32 | 16.54 | 1.46 | 22.38 | 16.86 | 1.50 | | 50 | 17.06 | 15.82 | 1.34 | 18.12 | 16.71 | 1.39 | 19.19 | 16.18 | 1.44 | 19.95 | 16.52 | 1.46 | 21.30 | 16.67 | 1.48 | 22.36 | 16.98 | 1.52 | | 55 | 17.05 | 15.94 | 1.36 | 18.11 | 16.84 | 1.41 | 19.17 | 16.31 | 1.46 | 19.93 | 16.64 | 1.48 | 21.29 | 16.79 | 1.51 | 22.35 | 17.10 | 1.54 | | 60 | 17.03 | 16.05 | 1.38 | 18.09 | 16.96 | 1.43 | 19.15 | 16.42 | 1.48 | 19.92 | 16.77 | 1.50 | 21.27 | 16.90 | 1.53 | 22.33 | 17.23 | 1.55 | | 65 | 17.03 | 16.17 | 1.40 | 18.08 | 17.08 | 1.44 | 19.14 | 16.54 | 1.50 | 19.90 | 16.88 | 1.52 | 21.25 | 17.03 | 1.55 | 22.31 | 17.36 | 1.57 | | 70 | 17.01 | 16.29 | 1.42 | 18.06 | 17.20 | 1.46 | 19.12 | 16.66 | 1.52 | 19.89 | 17.01 | 1.53 | 21.24 | 17.15 | 1.57 | 22.29 | 17.47 | 1.59 | | 75 | 16.60 | 16.02 | 1.49 | 17.66 | 16.94 | 1.55 | 18.71 | 16.42 | 1.60 | 19.47 | 16.78 | 1.62 | 20.82 | 16.94 | 1.65 | 21.87 | 17.27 | 1.68 | | 80 | 16.19 | 15.75 | 1.57 | 17.25 | 16.68 | 1.62 | 18.30 | 16.18 | 1.68 | 19.05 | 16.55 | 1.70 | 20.40 | 16.73 | 1.73 | 21.45 | 17.07 | 1.77 | | 85 | 15.79 | 15.46 | 1.64 | 16.84 | 16.40 | 1.70 | 17.88 | 15.93 | 1.77 | 18.64 | 16.31 | 1.79 | 19.98 | 16.50 | 1.82 | 21.03 | 16.86 | 1.85 | | 90 | 15.38 |
15.17 | 1.72 | 16.43 | 16.11 | 1.78 | 17.47 | 15.67 | 1.85 | 18.23 | 16.05 | 1.87 | 19.57 | 16.27 | 1.90 | 20.61 | 16.64 | 1.94 | | 95 | 14.94 | 15.00 | 1.79 | 15.98 | 15.96 | 1.86 | 17.02 | 15.56 | 1.93 | 17.50 | 15.70 | 1.95 | 19.10 | 16.19 | 1.98 | 20.15 | 16.57 | 2.03 | | 100 | 14.58 | 14.61 | 1.87 | 15.62 | 15.56 | 1.94 | 16.66 | 15.18 | 2.01 | 17.27 | 15.46 | 2.03 | 18.74 | 15.84 | 2.07 | 19.78 | 16.22 | 2.11 | | 105 | 14.21 | 14.20 | 1.95 | 15.26 | 15.16 | 2.02 | 16.29 | 14.81 | 2.09 | 17.05 | 15.21 | 2.11 | 18.38 | 15.49 | 2.16 | 19.42 | 15.89 | 2.20 | | 110 | 13.85 | 13.72 | 2.03 | 14.89 | 14.67 | 2.09 | 15.93 | 14.35 | 2.18 | 16.68 | 14.76 | 2.20 | 18.02 | 15.05 | 2.24 | 19.05 | 15.45 | 2.29 | | 115 | 13.48 | 13.30 | 2.10 | 14.53 | 14.25 | 2.18 | 15.57 | 13.97 | 2.26 | 16.32 | 14.38 | 2.28 | 17.65 | 14.69 | 2.33 | 18.69 | 15.10 | 2.37 | | 118 | 13.27 | 13.21 | 2.15 | 14.31 | 14.17 | 2.22 | 15.35 | 13.90 | 2.31 | 16.10 | 14.32 | 2.33 | 17.43 | 14.64 | 2.37 | 18.47 | 15.06 | 2.42 | | 122 | 13.20 | 13.18 | 2.20 | 14.23 | 14.14 | 2.29 | 15.28 | 13.88 | 2.37 | 16.03 | 14.30 | 2.39 | 17.36 | 14.62 | 2.44 | 18.40 | 15.05 | 2.49 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4° F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. \bigcirc Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA181A (KNSLA181A / KUSXA181A) Table 29: KSSLA181A (KNSLA181A / KUSXA181A) Maximum Cooling Capacities. | | | | | | | In | door A | ir Tem | perat | ure (°F | DB/ | °F WB |) | | | | | | |----------------------|-------|---------|------|-------|---------|------|--------|---------|-------|---------|---------|-------|-------|---------|------|-------|---------|------| | Outdoor | 6 | 68 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | ı | | 86 / 72 | | | 90 / 75 | | | Air Temp.
(°F DB) | TC | SHC | PI | тс | SHC | PI | | -4 | 24.38 | 20.03 | 1.64 | 25.90 | 21.15 | 1.69 | 27.41 | 20.48 | 1.75 | 28.50 | 20.92 | 1.77 | 30.44 | 21.09 | 1.81 | 31.95 | 21.49 | 1.84 | | -0.4 | 24.37 | 20.14 | 1.65 | 25.88 | 21.28 | 1.71 | 27.40 | 20.60 | 1.77 | 28.49 | 21.04 | 1.79 | 30.42 | 21.21 | 1.83 | 31.94 | 21.61 | 1.87 | | 5 | 24.35 | 20.32 | 1.68 | 25.86 | 21.46 | 1.74 | 27.37 | 20.78 | 1.80 | 28.46 | 21.23 | 1.82 | 30.40 | 21.40 | 1.86 | 31.91 | 21.81 | 1.90 | | 10 | 24.33 | 20.48 | 1.70 | 25.84 | 21.64 | 1.76 | 27.35 | 20.95 | 1.83 | 28.44 | 21.39 | 1.85 | 30.37 | 21.58 | 1.89 | 31.88 | 21.99 | 1.93 | | 15 | 24.31 | 20.64 | 1.72 | 25.82 | 21.81 | 1.79 | 27.33 | 21.11 | 1.86 | 28.42 | 21.56 | 1.88 | 30.35 | 21.74 | 1.91 | 31.86 | 22.15 | 1.95 | | 20 | 24.29 | 20.80 | 1.75 | 25.80 | 21.97 | 1.82 | 27.31 | 21.28 | 1.88 | 28.40 | 21.72 | 1.91 | 30.33 | 21.91 | 1.94 | 31.84 | 22.32 | 1.98 | | 25 | 24.27 | 20.97 | 1.77 | 25.78 | 22.15 | 1.84 | 27.29 | 21.45 | 1.91 | 28.38 | 21.90 | 1.93 | 30.30 | 22.09 | 1.97 | 31.81 | 22.50 | 2.00 | | 30 | 24.26 | 21.13 | 1.80 | 25.76 | 22.32 | 1.87 | 27.27 | 21.61 | 1.94 | 28.36 | 22.06 | 1.96 | 30.28 | 22.25 | 1.99 | 31.79 | 22.67 | 2.03 | | 35 | 24.24 | 21.29 | 1.83 | 25.74 | 22.48 | 1.89 | 27.25 | 21.77 | 1.97 | 28.33 | 22.23 | 1.99 | 30.26 | 22.42 | 2.02 | 31.76 | 22.84 | 2.06 | | 40 | 24.22 | 21.45 | 1.85 | 25.72 | 22.66 | 1.92 | 27.23 | 21.94 | 1.99 | 28.31 | 22.40 | 2.01 | 30.24 | 22.58 | 2.05 | 31.74 | 23.02 | 2.09 | | 45 | 24.20 | 21.61 | 1.88 | 25.70 | 22.83 | 1.95 | 27.21 | 22.10 | 2.01 | 28.29 | 22.57 | 2.04 | 30.21 | 22.76 | 2.07 | 31.71 | 23.19 | 2.12 | | 50 | 24.18 | 21.76 | 1.90 | 25.68 | 22.99 | 1.97 | 27.19 | 22.26 | 2.04 | 28.27 | 22.73 | 2.06 | 30.19 | 22.93 | 2.10 | 31.69 | 23.35 | 2.15 | | 55 | 24.16 | 21.92 | 1.93 | 25.66 | 23.17 | 1.99 | 27.16 | 22.43 | 2.07 | 28.25 | 22.89 | 2.09 | 30.17 | 23.09 | 2.13 | 31.67 | 23.53 | 2.18 | | 60 | 24.14 | 22.09 | 1.95 | 25.64 | 23.33 | 2.02 | 27.14 | 22.60 | 2.09 | 28.23 | 23.07 | 2.12 | 30.14 | 23.25 | 2.16 | 31.64 | 23.70 | 2.20 | | 65 | 24.13 | 22.25 | 1.98 | 25.62 | 23.50 | 2.04 | 27.12 | 22.76 | 2.12 | 28.20 | 23.23 | 2.15 | 30.12 | 23.43 | 2.19 | 31.62 | 23.88 | 2.23 | | 70 | 24.11 | 22.41 | 2.00 | 25.60 | 23.67 | 2.07 | 27.10 | 22.92 | 2.15 | 28.18 | 23.40 | 2.17 | 30.10 | 23.59 | 2.22 | 31.59 | 24.04 | 2.26 | | 75 | 23.53 | 22.04 | 2.11 | 25.02 | 23.30 | 2.19 | 26.51 | 22.60 | 2.27 | 27.59 | 23.08 | 2.30 | 29.50 | 23.30 | 2.33 | 30.99 | 23.76 | 2.38 | | 80 | 22.95 | 21.66 | 2.22 | 24.44 | 22.94 | 2.30 | 25.93 | 22.26 | 2.38 | 27.00 | 22.77 | 2.41 | 28.91 | 23.02 | 2.45 | 30.40 | 23.49 | 2.50 | | 85 | 22.37 | 21.26 | 2.32 | 23.86 | 22.56 | 2.41 | 25.34 | 21.91 | 2.50 | 26.42 | 22.43 | 2.53 | 28.32 | 22.71 | 2.58 | 29.80 | 23.19 | 2.62 | | 90 | 21.80 | 20.87 | 2.43 | 23.28 | 22.16 | 2.52 | 24.76 | 21.56 | 2.61 | 25.83 | 22.09 | 2.64 | 27.73 | 22.38 | 2.69 | 29.21 | 22.89 | 2.75 | | 95 | 21.17 | 20.64 | 2.54 | 22.65 | 21.96 | 2.63 | 24.12 | 21.40 | 2.73 | 24.80 | 21.60 | 2.76 | 27.07 | 22.27 | 2.81 | 28.55 | 22.79 | 2.87 | | 100 | 20.66 | 20.09 | 2.64 | 22.13 | 21.40 | 2.74 | 23.61 | 20.89 | 2.85 | 24.48 | 21.26 | 2.88 | 26.56 | 21.79 | 2.93 | 28.03 | 22.32 | 2.99 | | 105 | 20.14 | 19.53 | 2.76 | 21.62 | 20.85 | 2.86 | 23.09 | 20.38 | 2.96 | 24.16 | 20.93 | 2.99 | 26.04 | 21.31 | 3.05 | 27.52 | 21.86 | 3.11 | | 110 | 19.63 | 18.88 | 2.87 | 21.10 | 20.18 | 2.96 | 22.58 | 19.75 | 3.08 | 23.64 | 20.31 | 3.11 | 25.53 | 20.70 | 3.17 | 27.00 | 21.25 | 3.23 | | 115 | 19.11 | 18.30 | 2.97 | 20.59 | 19.61 | 3.08 | 22.06 | 19.22 | 3.20 | 23.13 | 19.78 | 3.22 | 25.01 | 20.21 | 3.29 | 26.49 | 20.78 | 3.36 | | 118 | 18.80 | 18.18 | 3.04 | 20.28 | 19.50 | 3.15 | 21.75 | 19.12 | 3.26 | 22.82 | 19.70 | 3.30 | 24.70 | 20.14 | 3.36 | 26.18 | 20.72 | 3.43 | | 122 | 18.70 | 18.13 | 3.12 | 20.17 | 19.45 | 3.23 | 21.65 | 19.10 | 3.35 | 22.71 | 19.67 | 3.39 | 24.60 | 20.12 | 3.46 | 26.07 | 20.70 | 3.53 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. \bigcirc Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA241A (KNSLA241A / KUSXA241A) Table 30: KSSLA241A (KNSLA241A / KUSXA241A) Maximum Cooling Capacities. | | | | | 1 | | | | | | | | | | | | | | | |----------------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------| | Outdoor
Air Temp. | | 68 / 57 | • | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | | (°F DB) | тс | SHC | PI | | -4 | 29.49 | 22.81 | 1.78 | 31.33 | 24.09 | 1.84 | 33.16 | 23.32 | 1.91 | 34.48 | 23.82 | 1.93 | 36.82 | 24.02 | 1.97 | 38.65 | 24.47 | 2.00 | | -0.4 | 29.48 | 22.94 | 1.79 | 31.31 | 24.23 | 1.86 | 33.15 | 23.47 | 1.93 | 34.46 | 23.96 | 1.95 | 36.80 | 24.16 | 1.99 | 38.64 | 24.61 | 2.03 | | 5 | 29.46 | 23.14 | 1.82 | 31.28 | 24.44 | 1.89 | 33.11 | 23.66 | 1.96 | 34.43 | 24.17 | 1.98 | 36.77 | 24.37 | 2.02 | 38.60 | 24.84 | 2.06 | | 10 | 29.43 | 23.32 | 1.85 | 31.26 | 24.64 | 1.92 | 33.08 | 23.86 | 1.99 | 34.40 | 24.36 | 2.01 | 36.74 | 24.57 | 2.05 | 38.56 | 25.04 | 2.09 | | 15 | 29.41 | 23.51 | 1.87 | 31.23 | 24.84 | 1.95 | 33.06 | 24.05 | 2.02 | 34.38 | 24.56 | 2.04 | 36.71 | 24.76 | 2.07 | 38.54 | 25.22 | 2.12 | | 20 | 29.38 | 23.69 | 1.91 | 31.21 | 25.03 | 1.98 | 33.04 | 24.23 | 2.04 | 34.35 | 24.74 | 2.07 | 36.69 | 24.95 | 2.11 | 38.52 | 25.42 | 2.15 | | 25 | 29.36 | 23.88 | 1.93 | 31.19 | 25.22 | 2.00 | 33.01 | 24.43 | 2.07 | 34.33 | 24.94 | 2.09 | 36.65 | 25.15 | 2.14 | 38.48 | 25.62 | 2.18 | | 30 | 29.35 | 24.06 | 1.96 | 31.16 | 25.42 | 2.03 | 32.99 | 24.61 | 2.11 | 34.31 | 25.12 | 2.13 | 36.63 | 25.34 | 2.17 | 38.46 | 25.82 | 2.21 | | 35 | 29.32 | 24.25 | 1.99 | 31.14 | 25.61 | 2.05 | 32.96 | 24.80 | 2.14 | 34.27 | 25.32 | 2.16 | 36.60 | 25.54 | 2.20 | 38.42 | 26.02 | 2.24 | | 40 | 29.30 | 24.43 | 2.01 | 31.11 | 25.80 | 2.08 | 32.94 | 24.98 | 2.16 | 34.25 | 25.51 | 2.19 | 36.58 | 25.72 | 2.23 | 38.40 | 26.22 | 2.27 | | 45 | 29.27 | 24.61 | 2.04 | 31.09 | 26.00 | 2.12 | 32.92 | 25.17 | 2.19 | 34.22 | 25.71 | 2.22 | 36.54 | 25.92 | 2.25 | 38.36 | 26.41 | 2.31 | | 50 | 29.25 | 24.78 | 2.06 | 31.06 | 26.19 | 2.14 | 32.89 | 25.35 | 2.22 | 34.20 | 25.89 | 2.24 | 36.52 | 26.12 | 2.28 | 38.33 | 26.60 | 2.34 | | 55 | 29.23 | 24.97 | 2.09 | 31.04 | 26.39 | 2.17 | 32.85 | 25.55 | 2.25 | 34.17 | 26.07 | 2.27 | 36.50 | 26.30 | 2.32 | 38.31 | 26.80 | 2.37 | | 60 | 29.20 | 25.15 | 2.12 | 31.02 | 26.57 | 2.20 | 32.83 | 25.73 | 2.27 | 34.15 | 26.27 | 2.31 | 36.46 | 26.48 | 2.35 | 38.27 | 26.99 | 2.39 | | 65 | 29.19 | 25.34 | 2.15 | 30.99 | 26.77 | 2.22 | 32.81 | 25.92 | 2.31 | 34.11 | 26.46 | 2.34 | 36.44 | 26.68 | 2.38 | 38.25 | 27.19 | 2.42 | | 70 | 29.17 | 25.52 | 2.18 | 30.97 | 26.95 | 2.25 | 32.78 | 26.10 | 2.34 | 34.09 | 26.65 | 2.36 | 36.41 | 26.87 | 2.41 | 38.21 | 27.38 | 2.45 | | 75 | 28.46 | 25.10 | 2.29 | 30.27 | 26.54 | 2.38 | 32.07 | 25.73 | 2.46 | 33.38 | 26.29 | 2.49 | 35.69 | 26.54 | 2.54 | 37.49 | 27.07 | 2.59 | | 80 |
27.76 | 24.67 | 2.41 | 29.56 | 26.13 | 2.49 | 31.37 | 25.35 | 2.59 | 32.66 | 25.93 | 2.62 | 34.97 | 26.22 | 2.66 | 36.77 | 26.75 | 2.72 | | 85 | 27.06 | 24.22 | 2.53 | 28.86 | 25.69 | 2.62 | 30.65 | 24.95 | 2.72 | 31.96 | 25.55 | 2.75 | 34.26 | 25.86 | 2.80 | 36.05 | 26.41 | 2.85 | | 90 | 26.37 | 23.76 | 2.64 | 28.16 | 25.24 | 2.74 | 29.95 | 24.56 | 2.84 | 31.25 | 25.15 | 2.87 | 33.54 | 25.49 | 2.93 | 35.33 | 26.07 | 2.99 | | 95 | 25.61 | 23.51 | 2.76 | 27.40 | 25.01 | 2.86 | 29.18 | 24.37 | 2.97 | 30.00 | 24.60 | 3.00 | 32.75 | 25.37 | 3.05 | 34.54 | 25.96 | 3.12 | | 100 | 24.99 | 22.89 | 2.87 | 26.77 | 24.37 | 2.98 | 28.56 | 23.79 | 3.09 | 29.61 | 24.22 | 3.13 | 32.13 | 24.81 | 3.19 | 33.91 | 25.42 | 3.25 | | 105 | 24.36 | 22.25 | 3.00 | 26.15 | 23.75 | 3.11 | 27.93 | 23.21 | 3.22 | 29.23 | 23.83 | 3.25 | 31.50 | 24.27 | 3.32 | 33.29 | 24.90 | 3.38 | | 110 | 23.75 | 21.50 | 3.12 | 25.52 | 22.98 | 3.22 | 27.31 | 22.49 | 3.35 | 28.60 | 23.13 | 3.38 | 30.88 | 23.58 | 3.44 | 32.66 | 24.20 | 3.52 | | 115 | 23.12 | 20.84 | 3.23 | 24.91 | 22.33 | 3.35 | 26.69 | 21.89 | 3.47 | 27.98 | 22.53 | 3.51 | 30.25 | 23.01 | 3.58 | 32.04 | 23.66 | 3.65 | | 118 | 22.74 | 20.70 | 3.31 | 24.53 | 22.21 | 3.42 | 26.31 | 21.78 | 3.55 | 27.60 | 22.43 | 3.59 | 29.88 | 22.94 | 3.65 | 31.67 | 23.59 | 3.73 | | 122 | 22.62 | 20.65 | 3.39 | 24.40 | 22.15 | 3.52 | 26.19 | 21.75 | 3.64 | 27.47 | 22.40 | 3.68 | 29.76 | 22.91 | 3.76 | 31.54 | 23.58 | 3.83 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4° F to $+122^{\circ}$ F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. On not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA301A (KNSLA301A / KUSXA301A) Table 31: KSSLA301A (KNSLA301A / KUSXA301A) Maximum Cooling Capacities. | Outdoor
Air Temp. | | 68 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | |----------------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------| | (°F DB) | тс | SHC | PI | | -4 | 35.39 | 26.99 | 2.48 | 37.60 | 28.50 | 2.57 | 39.79 | 27.59 | 2.65 | 41.37 | 28.18 | 2.68 | 44.19 | 28.41 | 2.74 | 46.38 | 28.95 | 2.79 | | -0.4 | 35.38 | 27.14 | 2.49 | 37.57 | 28.66 | 2.60 | 39.77 | 27.76 | 2.68 | 41.36 | 28.35 | 2.71 | 44.16 | 28.58 | 2.77 | 46.36 | 29.12 | 2.83 | | 5 | 35.35 | 27.37 | 2.54 | 37.54 | 28.92 | 2.64 | 39.73 | 27.99 | 2.73 | 41.31 | 28.60 | 2.76 | 44.13 | 28.83 | 2.82 | 46.32 | 29.38 | 2.87 | | 10 | 35.32 | 27.59 | 2.58 | 37.51 | 29.15 | 2.67 | 39.70 | 28.23 | 2.77 | 41.28 | 28.82 | 2.80 | 44.09 | 29.07 | 2.86 | 46.28 | 29.62 | 2.92 | | 15 | 35.29 | 27.81 | 2.61 | 37.48 | 29.38 | 2.71 | 39.67 | 28.45 | 2.82 | 41.25 | 29.05 | 2.85 | 44.06 | 29.28 | 2.89 | 46.25 | 29.84 | 2.95 | | 20 | 35.26 | 28.03 | 2.65 | 37.45 | 29.60 | 2.76 | 39.64 | 28.66 | 2.85 | 41.23 | 29.27 | 2.89 | 44.03 | 29.52 | 2.93 | 46.22 | 30.07 | 2.99 | | 25 | 35.23 | 28.25 | 2.68 | 37.42 | 29.84 | 2.79 | 39.61 | 28.90 | 2.89 | 41.20 | 29.50 | 2.92 | 43.98 | 29.75 | 2.98 | 46.18 | 30.31 | 3.04 | | 30 | 35.22 | 28.46 | 2.73 | 37.39 | 30.07 | 2.83 | 39.59 | 29.12 | 2.93 | 41.17 | 29.72 | 2.96 | 43.95 | 29.97 | 3.02 | 46.15 | 30.54 | 3.08 | | 35 | 35.19 | 28.68 | 2.77 | 37.36 | 30.29 | 2.86 | 39.56 | 29.33 | 2.98 | 41.12 | 29.95 | 3.01 | 43.93 | 30.21 | 3.07 | 46.10 | 30.78 | 3.12 | | 40 | 35.16 | 28.90 | 2.80 | 37.34 | 30.52 | 2.90 | 39.53 | 29.55 | 3.01 | 41.10 | 30.17 | 3.05 | 43.90 | 30.42 | 3.11 | 46.07 | 31.01 | 3.17 | | 45 | 35.13 | 29.12 | 2.85 | 37.31 | 30.76 | 2.95 | 39.50 | 29.77 | 3.05 | 41.07 | 30.41 | 3.09 | 43.85 | 30.66 | 3.14 | 46.03 | 31.25 | 3.21 | | 50 | 35.10 | 29.32 | 2.87 | 37.28 | 30.98 | 2.98 | 39.47 | 29.99 | 3.09 | 41.04 | 30.63 | 3.12 | 43.82 | 30.89 | 3.18 | 46.00 | 31.46 | 3.26 | | 55 | 35.07 | 29.54 | 2.92 | 37.25 | 31.21 | 3.02 | 39.43 | 30.22 | 3.14 | 41.01 | 30.84 | 3.17 | 43.80 | 31.11 | 3.23 | 45.97 | 31.70 | 3.30 | | 60 | 35.04 | 29.75 | 2.95 | 37.22 | 31.43 | 3.07 | 39.40 | 30.44 | 3.17 | 40.98 | 31.08 | 3.21 | 43.75 | 31.33 | 3.27 | 45.93 | 31.93 | 3.33 | | 65 | 35.03 | 29.97 | 2.99 | 37.19 | 31.66 | 3.09 | 39.37 | 30.66 | 3.21 | 40.94 | 31.30 | 3.26 | 43.72 | 31.56 | 3.31 | 45.90 | 32.17 | 3.37 | | 70 | 35.00 | 30.19 | 3.04 | 37.16 | 31.88 | 3.14 | 39.34 | 30.88 | 3.26 | 40.91 | 31.53 | 3.29 | 43.69 | 31.78 | 3.36 | 45.86 | 32.39 | 3.42 | | 75 | 34.16 | 29.69 | 3.20 | 36.32 | 31.40 | 3.31 | 38.48 | 30.44 | 3.43 | 40.05 | 31.09 | 3.48 | 42.82 | 31.40 | 3.53 | 44.99 | 32.02 | 3.61 | | 80 | 33.31 | 29.18 | 3.36 | 35.48 | 30.91 | 3.48 | 37.64 | 29.99 | 3.61 | 39.19 | 30.68 | 3.65 | 41.97 | 31.01 | 3.71 | 44.13 | 31.65 | 3.78 | | 85 | 32.47 | 28.65 | 3.52 | 34.64 | 30.39 | 3.65 | 36.78 | 29.52 | 3.78 | 38.35 | 30.22 | 3.83 | 41.11 | 30.59 | 3.90 | 43.26 | 31.25 | 3.97 | | 90 | 31.65 | 28.11 | 3.68 | 33.79 | 29.85 | 3.81 | 35.94 | 29.05 | 3.96 | 37.50 | 29.75 | 4.00 | 40.25 | 30.16 | 4.08 | 42.40 | 30.84 | 4.17 | | 95 | 30.73 | 27.81 | 3.84 | 32.88 | 29.59 | 3.99 | 35.01 | 28.83 | 4.14 | 36.00 | 29.10 | 4.18 | 39.30 | 30.01 | 4.25 | 41.44 | 30.71 | 4.34 | | 100 | 29.99 | 27.07 | 4.00 | 32.12 | 28.83 | 4.15 | 34.27 | 28.14 | 4.31 | 35.54 | 28.65 | 4.36 | 38.55 | 29.35 | 4.44 | 40.69 | 30.07 | 4.53 | | 105 | 29.24 | 26.32 | 4.18 | 31.38 | 28.09 | 4.33 | 33.52 | 27.46 | 4.49 | 35.07 | 28.19 | 4.53 | 37.80 | 28.71 | 4.62 | 39.95 | 29.45 | 4.71 | | 110 | 28.50 | 25.43 | 4.34 | 30.63 | 27.19 | 4.49 | 32.78 | 26.60 | 4.66 | 34.32 | 27.36 | 4.71 | 37.06 | 27.89 | 4.80 | 39.19 | 28.63 | 4.90 | | 115 | 27.74 | 24.66 | 4.50 | 29.89 | 26.42 | 4.66 | 32.02 | 25.90 | 4.84 | 33.58 | 26.65 | 4.88 | 36.30 | 27.22 | 4.99 | 38.45 | 27.99 | 5.09 | | 118 | 27.29 | 24.49 | 4.61 | 29.44 | 26.27 | 4.77 | 31.57 | 25.76 | 4.94 | 33.13 | 26.54 | 5.00 | 35.85 | 27.14 | 5.09 | 38.00 | 27.91 | 5.19 | | 122 | 27.15 | 24.42 | 4.72 | 29.28 | 26.20 | 4.90 | 31.43 | 25.73 | 5.07 | 32.97 | 26.50 | 5.13 | 35.71 | 27.11 | 5.24 | 37.84 | 27.89 | 5.34 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4° F to $+122^{\circ}$ F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. On not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA361A (KNSLA361A / KUSXA361A) Table 32: KSSLA361A (KNSLA361A / KUSXA361A) Maximum Cooling Capacities. | Outdoor | | 68 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | | | 90 / 75 | | |-----------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|----------|------| | Air Temp. | | 00/3/ | | | 12/01 | | | 11104 | | | 00/07 | | | 00/12 | | | 90 / / 3 |) | | (°F DB) | TC | SHC | PI | | -4 | 43.25 | 32.46 | 2.83 | 45.95 | 34.27 | 2.94 | 48.63 | 33.19 | 3.04 | 50.56 | 33.89 | 3.07 | 54.01 | 34.17 | 3.14 | 56.69 | 34.82 | 3.19 | | -0.4 | 43.24 | 32.64 | 2.85 | 45.92 | 34.48 | 2.97 | 48.61 | 33.39 | 3.07 | 50.55 | 34.09 | 3.10 | 53.97 | 34.38 | 3.17 | 56.67 | 35.02 | 3.24 | | 5 | 43.20 | 32.92 | 2.90 | 45.88 | 34.78 | 3.02 | 48.56 | 33.67 | 3.12 | 50.49 | 34.40 | 3.15 | 53.94 | 34.68 | 3.22 | 56.61 | 35.34 | 3.29 | | 10 | 43.17 | 33.19 | 2.95 | 45.85 | 35.06 | 3.05 | 48.52 | 33.95 | 3.17 | 50.46 | 34.66 | 3.20 | 53.88 | 34.96 | 3.27 | 56.56 | 35.63 | 3.34 | | 15 | 43.13 | 33.45 | 2.99 | 45.81 | 35.34 | 3.10 | 48.49 | 34.21 | 3.22 | 50.42 | 34.94 | 3.25 | 53.85 | 35.22 | 3.30 | 56.53 | 35.89 | 3.37 | | 20 | 43.10 | 33.71 | 3.04 | 45.77 | 35.60 | 3.15 | 48.45 | 34.48 | 3.25 | 50.39 | 35.20 | 3.30 | 53.81 | 35.50 | 3.35 | 56.49 | 36.17 | 3.42 | | 25 | 43.06 | 33.97 | 3.07 | 45.74 | 35.89 | 3.19 | 48.42 | 34.76 | 3.30 | 50.35 | 35.48 | 3.34 | 53.76 | 35.79 | 3.40 | 56.44 | 36.45 | 3.47 | | 30 | 43.04 | 34.23 | 3.12 | 45.70 | 36.17 | 3.24 | 48.38 | 35.02 | 3.35 | 50.32 | 35.75 | 3.39 | 53.72 | 36.05 | 3.46 | 56.40 | 36.73 | 3.52 | | 35 | 43.01 | 34.50 | 3.17 | 45.67 | 36.43 | 3.27 | 48.35 | 35.28 | 3.40 | 50.26 | 36.03 | 3.44 | 53.69 | 36.33 | 3.51 | 56.35 | 37.02 | 3.57 | | 40 | 42.97 | 34.76 | 3.20 | 45.63 | 36.71 | 3.32 | 48.31 | 35.54 | 3.44 | 50.23 | 36.29 | 3.49 | 53.65 | 36.59 | 3.56 | 56.31 | 37.30 | 3.62 | | 45 | 42.94 | 35.02 | 3.25 | 45.60 | 37.00 | 3.37 | 48.28 | 35.81 | 3.49 | 50.19 | 36.57 | 3.54 | 53.60 | 36.88 | 3.59 | 56.26 | 37.58 | 3.67 | | 50 | 42.90 | 35.26 | 3.29 | 45.56 | 37.26 | 3.40 | 48.24 | 36.07 | 3.54 | 50.16 | 36.83 | 3.57 | 53.56 | 37.16 | 3.64 | 56.22 | 37.84 | 3.72 | | 55 | 42.86 | 35.52 | 3.34 | 45.53 | 37.54 | 3.46 | 48.19 | 36.35 | 3.59 | 50.12 | 37.10 | 3.62 | 53.53 | 37.42 | 3.69 | 56.19 | 38.13 | 3.77 | | 60 | 42.83 | 35.79 | 3.37 | 45.49 | 37.80 | 3.51 | 48.15 | 36.61 | 3.62 | 50.09 | 37.38 | 3.67 | 53.47 | 37.68 | 3.74 | 56.14 | 38.41 | 3.81 | | 65 | 42.81 | 36.05 | 3.42 | 45.45 | 38.08 | 3.54 | 48.12 | 36.88 | 3.67 | 50.03 | 37.64 | 3.72 | 53.44 | 37.96 | 3.79 | 56.10 | 38.69 | 3.86 | | 70 | 42.78 | 36.31 | 3.47 | 45.42 | 38.35 | 3.59 | 48.08 | 37.14 | 3.72 |
50.00 | 37.92 | 3.76 | 53.40 | 38.23 | 3.84 | 56.05 | 38.95 | 3.91 | | 75 | 41.75 | 35.71 | 3.66 | 44.39 | 37.76 | 3.79 | 47.03 | 36.61 | 3.92 | 48.95 | 37.40 | 3.97 | 52.34 | 37.76 | 4.04 | 54.98 | 38.51 | 4.13 | | 80 | 40.72 | 35.10 | 3.84 | 43.36 | 37.18 | 3.97 | 46.00 | 36.07 | 4.13 | 47.90 | 36.90 | 4.18 | 51.29 | 37.30 | 4.24 | 53.94 | 38.06 | 4.33 | | 85 | 39.69 | 34.46 | 4.03 | 42.33 | 36.55 | 4.18 | 44.96 | 35.50 | 4.33 | 46.87 | 36.35 | 4.38 | 50.25 | 36.79 | 4.46 | 52.87 | 37.58 | 4.55 | | 90 | 38.68 | 33.81 | 4.21 | 41.30 | 35.91 | 4.36 | 43.93 | 34.94 | 4.53 | 45.83 | 35.79 | 4.58 | 49.20 | 36.27 | 4.66 | 51.82 | 37.10 | 4.76 | | 95 | 37.56 | 33.45 | 4.39 | 40.19 | 35.58 | 4.56 | 42.79 | 34.68 | 4.73 | 44.00 | 35.00 | 4.78 | 48.03 | 36.09 | 4.86 | 50.65 | 36.94 | 4.96 | | 100 | 36.65 | 32.56 | 4.58 | 39.26 | 34.68 | 4.75 | 41.89 | 33.85 | 4.93 | 43.43 | 34.46 | 4.98 | 47.12 | 35.30 | 5.08 | 49.73 | 36.17 | 5.18 | | 105 | 35.73 | 31.65 | 4.78 | 38.36 | 33.79 | 4.95 | 40.97 | 33.02 | 5.13 | 42.86 | 33.91 | 5.18 | 46.20 | 34.54 | 5.28 | 48.83 | 35.42 | 5.38 | | 110 | 34.83 | 30.58 | 4.96 | 37.44 | 32.70 | 5.13 | 40.06 | 32.00 | 5.33 | 41.94 | 32.90 | 5.38 | 45.30 | 33.55 | 5.48 | 47.90 | 34.44 | 5.60 | | 115 | 33.90 | 29.66 | 5.15 | 36.53 | 31.77 | 5.33 | 39.14 | 31.15 | 5.53 | 41.04 | 32.06 | 5.59 | 44.37 | 32.74 | 5.70 | 47.00 | 33.67 | 5.82 | | 118 | 33.35 | 29.46 | 5.27 | 35.98 | 31.59 | 5.45 | 38.59 | 30.99 | 5.65 | 40.49 | 31.92 | 5.72 | 43.82 | 32.64 | 5.82 | 46.45 | 33.57 | 5.94 | | 122 | 33.18 | 29.38 | 5.40 | 35.79 | 31.51 | 5.60 | 38.41 | 30.95 | 5.80 | 40.29 | 31.88 | 5.87 | 43.65 | 32.60 | 5.99 | 46.25 | 33.55 | 6.10 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation Direct interpolation is permissible. On not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. It. level difference between outdoor and indoor units. Cooling capacity rating obtained with air entering the indoor unit at 80°F dry bulb (DB) and 67°F wet bulb (WB), and outdoor ambient conditions of 95°F dry bulb (DB) and 75°F wet bulb (WB). KSSLA421A (KNSLB421A / KUSXA422A) Table 33: KSSLA421A (KNSLB421A / KUSXA422A) Maximum Cooling Capacities. | Outdoor
Air Temp. | | 68 / 57 | | | 72 / 61 | | | 77 / 64 | ı | | 80 / 67 | 1 | | 86 / 72 | 1 | | 90 / 75 | | |----------------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------| | (°F DB) | тс | SHC | PI | | -4 | 49.15 | 36.17 | 3.15 | 52.22 | 38.19 | 3.27 | 55.26 | 36.98 | 3.38 | 57.46 | 37.76 | 3.42 | 61.37 | 38.08 | 3.49 | 64.42 | 38.80 | 3.55 | | -0.4 | 49.13 | 36.37 | 3.17 | 52.18 | 38.42 | 3.30 | 55.24 | 37.20 | 3.42 | 57.44 | 37.99 | 3.45 | 61.33 | 38.30 | 3.53 | 64.40 | 39.02 | 3.60 | | 5 | 49.09 | 36.69 | 3.23 | 52.14 | 38.75 | 3.36 | 55.18 | 37.52 | 3.47 | 57.38 | 38.33 | 3.51 | 61.29 | 38.64 | 3.58 | 64.33 | 39.38 | 3.66 | | 10 | 49.05 | 36.98 | 3.29 | 52.10 | 39.07 | 3.40 | 55.14 | 37.83 | 3.53 | 57.34 | 38.62 | 3.57 | 61.23 | 38.96 | 3.64 | 64.27 | 39.70 | 3.71 | | 15 | 49.01 | 37.27 | 3.32 | 52.06 | 39.38 | 3.45 | 55.10 | 38.12 | 3.58 | 57.30 | 38.93 | 3.62 | 61.19 | 39.25 | 3.68 | 64.23 | 39.99 | 3.75 | | 20 | 48.97 | 37.56 | 3.38 | 52.02 | 39.67 | 3.51 | 55.06 | 38.42 | 3.62 | 57.26 | 39.22 | 3.68 | 61.15 | 39.56 | 3.73 | 64.19 | 40.30 | 3.81 | | 25 | 48.93 | 37.85 | 3.42 | 51.98 | 39.99 | 3.55 | 55.02 | 38.73 | 3.68 | 57.22 | 39.54 | 3.71 | 61.09 | 39.88 | 3.79 | 64.13 | 40.62 | 3.86 | | 30 | 48.91 | 38.15 | 3.47 | 51.94 | 40.30 | 3.60 | 54.98 | 39.02 | 3.73 | 57.18 | 39.83 | 3.77 | 61.05 | 40.17 | 3.85 | 64.09 | 40.93 | 3.92 | | 35 | 48.87 | 38.44 | 3.53 | 51.90 | 40.60 | 3.64 | 54.94 | 39.31 | 3.79 | 57.12 | 40.15 | 3.83 | 61.01 | 40.48 | 3.90 | 64.03 | 41.25 | 3.98 | | 40 | 48.83 | 38.73 | 3.57 | 51.85 | 40.91 | 3.70 | 54.90 | 39.61 | 3.83 | 57.08 | 40.44 | 3.88 | 60.97 | 40.77 | 3.96 | 63.99 | 41.56 | 4.03 | | 45 | 48.79 | 39.02 | 3.62 | 51.81 | 41.22 | 3.75 | 54.86 | 39.90 | 3.88 | 57.04 | 40.75 | 3.94 | 60.91 | 41.09 | 3.99 | 63.93 | 41.88 | 4.09 | | 50 | 48.75 | 39.29 | 3.66 | 51.77 | 41.52 | 3.79 | 54.82 | 40.19 | 3.94 | 57.00 | 41.04 | 3.98 | 60.87 | 41.40 | 4.05 | 63.89 | 42.17 | 4.14 | | 55 | 48.71 | 39.58 | 3.71 | 51.73 | 41.83 | 3.85 | 54.76 | 40.51 | 3.99 | 56.96 | 41.34 | 4.03 | 60.83 | 41.70 | 4.11 | 63.85 | 42.48 | 4.20 | | 60 | 48.67 | 39.88 | 3.75 | 51.69 | 42.12 | 3.90 | 54.72 | 40.80 | 4.03 | 56.92 | 41.65 | 4.09 | 60.77 | 41.99 | 4.16 | 63.79 | 42.80 | 4.24 | | 65 | 48.65 | 40.17 | 3.81 | 51.65 | 42.44 | 3.94 | 54.68 | 41.09 | 4.09 | 56.85 | 41.94 | 4.14 | 60.73 | 42.30 | 4.22 | 63.75 | 43.11 | 4.29 | | 70 | 48.61 | 40.46 | 3.86 | 51.61 | 42.73 | 3.99 | 54.64 | 41.38 | 4.14 | 56.81 | 42.26 | 4.18 | 60.69 | 42.59 | 4.27 | 63.69 | 43.40 | 4.35 | | 75 | 47.44 | 39.79 | 4.07 | 50.44 | 42.08 | 4.22 | 53.45 | 40.80 | 4.37 | 55.63 | 41.67 | 4.42 | 59.48 | 42.08 | 4.50 | 62.48 | 42.91 | 4.59 | | 80 | 46.27 | 39.11 | 4.27 | 49.27 | 41.43 | 4.42 | 52.28 | 40.19 | 4.59 | 54.44 | 41.11 | 4.65 | 58.29 | 41.56 | 4.72 | 61.29 | 42.41 | 4.82 | | 85 | 45.10 | 38.39 | 4.48 | 48.10 | 40.73 | 4.65 | 51.09 | 39.56 | 4.82 | 53.27 | 40.51 | 4.87 | 57.10 | 41.00 | 4.97 | 60.08 | 41.88 | 5.06 | | 90 | 43.95 | 37.67 | 4.69 | 46.94 | 40.01 | 4.85 | 49.92 | 38.93 | 5.04 | 52.08 | 39.88 | 5.10 | 55.91 | 40.42 | 5.19 | 58.89 | 41.34 | 5.30 | | 95 | 42.68 | 37.27 | 4.89 | 45.67 | 39.65 | 5.08 | 48.63 | 38.64 | 5.26 | 50.00 | 39.00 | 5.32 | 54.58 | 40.21 | 5.41 | 57.56 | 41.16 | 5.53 | | 100 | 41.65 | 36.28 | 5.10 | 44.62 | 38.64 | 5.28 | 47.60 | 37.72 | 5.49 | 49.35 | 38.39 | 5.54 | 53.55 | 39.34 | 5.66 | 56.51 | 40.30 | 5.77 | | 105 | 40.60 | 35.27 | 5.32 | 43.59 | 37.65 | 5.51 | 46.55 | 36.80 | 5.71 | 48.71 | 37.79 | 5.77 | 52.50 | 38.48 | 5.88 | 55.48 | 39.47 | 5.99 | | 110 | 39.58 | 34.08 | 5.53 | 42.54 | 36.44 | 5.71 | 45.52 | 35.65 | 5.94 | 47.66 | 36.66 | 5.99 | 51.47 | 37.38 | 6.10 | 54.44 | 38.37 | 6.23 | | 115 | 38.53 | 33.05 | 5.73 | 41.51 | 35.41 | 5.94 | 44.48 | 34.71 | 6.16 | 46.63 | 35.72 | 6.22 | 50.42 | 36.48 | 6.35 | 53.41 | 37.52 | 6.48 | | 118 | 37.90 | 32.82 | 5.86 | 40.89 | 35.20 | 6.07 | 43.85 | 34.53 | 6.29 | 46.01 | 35.56 | 6.37 | 49.80 | 36.37 | 6.48 | 52.78 | 37.40 | 6.61 | | 122 | 37.70 | 32.73 | 6.01 | 40.67 | 35.11 | 6.23 | 43.65 | 34.48 | 6.46 | 45.79 | 35.52 | 6.53 | 49.60 | 36.33 | 6.66 | 52.56 | 37.38 | 6.79 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating the unit at this temperature, these values can be different by discontinuous operation ^{3.} Direct interpolation is permissible. On not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. KSSLA481A (KNSLB481A / KUSXA482A) Table 34: KSSLA481A (KNSLB481A / KUSXA482A) Maximum Cooling Capacities. | Outdoor
Air Temp. | | 68 / 57 | | | 72 / 61 | | | 77 / 64 | | | 80 / 67 | | | 86 / 72 | ! | | 90 / 75 | | |----------------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------| | (°F DB) | тс | SHC | PI | | -4 | 54.07 | 39.88 | 3.40 | 57.44 | 42.11 | 3.52 | 60.79 | 40.77 | 3.64 | 63.21 | 41.64 | 3.68 | 67.51 | 41.98 | 3.76 | 70.86 | 42.78 | 3.82 | | -0.4 | 54.05 | 40.10 | 3.42 | 57.40 | 42.36 | 3.56 | 60.77 | 41.02 | 3.68 | 63.18 | 41.89 | 3.72 | 67.46 | 42.23 | 3.80 | 70.83 | 43.02 | 3.88 | | 5 | 54.00 | 40.45 | 3.48 | 57.35 | 42.73 | 3.62 | 60.70 | 41.37 | 3.74 | 63.12 | 42.26 | 3.78 | 67.42 | 42.60 | 3.86 | 70.77 | 43.42 | 3.94 | | 10 | 53.96 | 40.77 | 3.54 | 57.31 | 43.07 | 3.66 | 60.66 | 41.71 | 3.80 | 63.07 | 42.58 | 3.84 | 67.35 | 42.95 | 3.92 | 70.70 | 43.77 | 4.00 | | 15 | 53.91 | 41.09 | 3.58 | 57.26 | 43.42 | 3.72 | 60.61 | 42.03 | 3.86 | 63.03 | 42.93 | 3.90 | 67.31 | 43.27 | 3.96 | 70.66 | 44.09 | 4.04 | | 20 | 53.87 | 41.41 | 3.64 | 57.22 | 43.74 | 3.78 | 60.57 | 42.36 | 3.90 | 62.98 | 43.25 | 3.96 | 67.26 | 43.62 | 4.02 | 70.61 | 44.44 | 4.10 | | 25 | 53.82 | 41.74 | 3.68 | 57.17 | 44.09 | 3.82 | 60.52 | 42.70 | 3.96 | 62.94 | 43.59 | 4.00 | 67.20 | 43.97 | 4.08 | 70.55 | 44.78 | 4.16 | | 30 | 53.80 | 42.06 | 3.74 | 57.13 | 44.44 | 3.88 | 60.48 | 43.02 | 4.02 | 62.90 | 43.92 | 4.06 | 67.15 | 44.29 | 4.14 | 70.50 | 45.13 | 4.22 | | 35 | 53.76 | 42.38 | 3.80 | 57.08 | 44.76 | 3.92 | 60.43 | 43.35 | 4.08 | 62.83 | 44.26 | 4.12 | 67.11 | 44.63 | 4.20 | 70.44 | 45.48 | 4.28 | | 40 | 53.71 | 42.70 | 3.84 | 57.04 | 45.11 | 3.98 | 60.39 | 43.67 | 4.12 | 62.78 | 44.59 | 4.18 | 67.06 | 44.96 | 4.26 | 70.39 | 45.82 | 4.34 | | 45 | 53.67 | 43.02 | 3.90 | 57.00 | 45.45 | 4.04 | 60.34 | 43.99 | 4.18 | 62.74 | 44.93 | 4.24 | 67.00 | 45.30 | 4.30 | 70.32 | 46.17 | 4.40 | | 50 | 53.63 | 43.32 | 3.94 | 56.95 | 45.77 | 4.08 | 60.30 | 44.31 | 4.24 | 62.70 | 45.25 | 4.28 | 66.95 | 45.65 | 4.36 | 70.28 | 46.49 | 4.46 | | 55 | 53.58 | 43.64 | 4.00 | 56.91 | 46.12 | 4.14 | 60.23 | 44.66 | 4.30 | 62.65 | 45.58 | 4.34 | 66.91 | 45.97 | 4.42 | 70.24 | 46.84 | 4.52 | | 60 | 53.54 | 43.97 | 4.04 | 56.86 | 46.44 | 4.20 | 60.19 |
44.98 | 4.34 | 62.61 | 45.92 | 4.40 | 66.84 | 46.29 | 4.48 | 70.17 | 47.19 | 4.56 | | 65 | 53.51 | 44.29 | 4.10 | 56.82 | 46.79 | 4.24 | 60.15 | 45.30 | 4.40 | 62.54 | 46.24 | 4.46 | 66.80 | 46.64 | 4.54 | 70.13 | 47.53 | 4.62 | | 70 | 53.47 | 44.61 | 4.16 | 56.77 | 47.11 | 4.30 | 60.10 | 45.63 | 4.46 | 62.50 | 46.59 | 4.50 | 66.75 | 46.96 | 4.60 | 70.06 | 47.85 | 4.68 | | 75 | 52.18 | 43.87 | 4.38 | 55.49 | 46.39 | 4.54 | 58.79 | 44.98 | 4.70 | 61.19 | 45.95 | 4.76 | 65.42 | 46.39 | 4.85 | 68.73 | 47.31 | 4.95 | | 80 | 50.90 | 43.12 | 4.60 | 54.20 | 45.68 | 4.76 | 57.51 | 44.31 | 4.95 | 59.88 | 45.33 | 5.01 | 64.11 | 45.82 | 5.09 | 67.42 | 46.76 | 5.19 | | 85 | 49.61 | 42.33 | 4.83 | 52.92 | 44.91 | 5.01 | 56.20 | 43.62 | 5.19 | 58.59 | 44.66 | 5.25 | 62.81 | 45.20 | 5.35 | 66.09 | 46.17 | 5.45 | | 90 | 48.35 | 41.54 | 5.05 | 51.63 | 44.11 | 5.23 | 54.91 | 42.93 | 5.43 | 57.28 | 43.97 | 5.49 | 61.50 | 44.56 | 5.59 | 64.78 | 45.58 | 5.71 | | 95 | 46.95 | 41.09 | 5.27 | 50.23 | 43.72 | 5.47 | 53.49 | 42.60 | 5.67 | 55.00 | 43.00 | 5.73 | 60.03 | 44.34 | 5.83 | 63.32 | 45.38 | 5.95 | | 100 | 45.82 | 40.00 | 5.49 | 49.08 | 42.60 | 5.69 | 52.36 | 41.59 | 5.91 | 54.29 | 42.33 | 5.97 | 58.90 | 43.37 | 6.09 | 62.16 | 44.44 | 6.21 | | 105 | 44.67 | 38.89 | 5.73 | 47.95 | 41.51 | 5.93 | 51.21 | 40.57 | 6.15 | 53.58 | 41.66 | 6.21 | 57.75 | 42.43 | 6.33 | 61.03 | 43.52 | 6.45 | | 110 | 43.53 | 37.58 | 5.95 | 46.79 | 40.18 | 6.15 | 50.08 | 39.31 | 6.39 | 52.43 | 40.42 | 6.45 | 56.62 | 41.22 | 6.57 | 59.88 | 42.31 | 6.72 | | 115 | 42.38 | 36.44 | 6.17 | 45.66 | 39.04 | 6.39 | 48.92 | 38.27 | 6.63 | 51.30 | 39.38 | 6.70 | 55.47 | 40.23 | 6.84 | 58.75 | 41.37 | 6.98 | | 118 | 41.69 | 36.19 | 6.31 | 44.98 | 38.81 | 6.53 | 48.24 | 38.07 | 6.78 | 50.61 | 39.21 | 6.86 | 54.78 | 40.10 | 6.98 | 58.06 | 41.24 | 7.12 | | 122 | 41.47 | 36.09 | 6.47 | 44.73 | 38.71 | 6.72 | 48.01 | 38.02 | 6.96 | 50.36 | 39.16 | 7.04 | 54.56 | 40.05 | 7.18 | 57.82 | 41.22 | 7.32 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) SHC: Sensible Heating Capacity (kBtu/h) PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Cooling operating range with the Low Ambient Baffle Kit (sold separately) is -4°F to +122°F. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. ^{3.} Direct interpolation is permissible. \bigcirc Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. ### KSSLA121A (KNSLB121A / KUSXA121A) Table 35: KSSLA121A (KNSLB121A / KUSXA121A) Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Temp | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|----------|------------|--------|-------|------|-------|------| | or DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 4.49 | 0.74 | 4.03 | 0.76 | 4.09 | 0.79 | 4.06 | 0.80 | 4.04 | 0.81 | 3.84 | 0.83 | | -4 | -4.4 | 7.06 | 0.77 | 6.90 | 0.79 | 6.70 | 0.82 | 6.60 | 0.83 | 6.51 | 0.85 | 6.27 | 0.87 | | 0 | -0.4 | 7.40 | 0.79 | 7.23 | 0.82 | 7.03 | 0.85 | 6.91 | 0.86 | 6.82 | 0.87 | 6.57 | 0.90 | | 5 | 4.5 | 7.82 | 0.83 | 7.65 | 0.85 | 7.43 | 0.88 | 7.30 | 0.90 | 7.21 | 0.91 | 6.94 | 0.94 | | 10 | 9 | 8.41 | 0.87 | 8.22 | 0.90 | 7.99 | 0.92 | 7.86 | 0.94 | 7.76 | 0.95 | 7.47 | 0.98 | | 17 | 15 | 9.21 | 0.90 | 9.00 | 0.92 | 8.74 | 0.96 | 8.60 | 0.97 | 8.49 | 0.98 | 8.18 | 1.01 | | 20 | 19 | 9.89 | 0.91 | 9.67 | 0.94 | 9.39 | 0.97 | 9.24 | 0.98 | 9.12 | 1.00 | 8.78 | 1.03 | | 25 | 23 | 11.03 | 0.93 | 10.79 | 0.96 | 10.48 | 0.99 | 10.31 | 1.01 | 10.17 | 1.02 | 9.80 | 1.05 | | 30 | 28 | 12.17 | 0.95 | 11.90 | 0.98 | 11.56 | 1.02 | 11.37 | 1.03 | 11.22 | 1.05 | 10.81 | 1.08 | | 35 | 32 | 13.32 | 0.98 | 13.02 | 1.01 | 12.65 | 1.04 | 12.44 | 1.06 | 12.27 | 1.07 | 11.83 | 1.10 | | 40 | 36 | 14.46 | 1.00 | 14.14 | 1.03 | 13.73 | 1.06 | 13.51 | 1.08 | 13.33 | 1.10 | 12.84 | 1.13 | | 45 | 41 | 15.60 | 1.02 | 15.25 | 1.05 | 14.81 | 1.09 | 14.57 | 1.10 | 14.38 | 1.12 | 13.86 | 1.15 | | 47 | 43 | 16.06 | 1.03 | 15.70 | 1.06 | 15.25 | 1.10 | 15.00 | 1.11 | 14.80 | 1.13 | 14.26 | 1.16 | | 50 | 46 | 16.10 | 1.02 | 15.78 | 1.05 | 15.39 | 1.08 | 15.16 | 1.10 | 14.99 | 1.11 | 14.48 | 1.14 | | 55 | 51 | 16.18 | 1.01 | 15.91 | 1.03 | 15.62 | 1.06 | 15.44 | 1.07 | 15.30 | 1.08 | 14.84 | 1.10 | | 60 | 56 | 16.26 | 1.00 | 16.05 | 1.02 | 15.85 | 1.04 | 15.72 | 1.04 | 15.61 | 1.05 | 15.21 | 1.07 | | 63 | 59 | 16.31 | 0.99 | 16.13 | 1.01 | 15.99 | 1.02 | 15.88 | 1.03 | 15.80 | 1.03 | 15.42 | 1.04 | | 68 | 64 | 16.36 | 0.99 | 16.21 | 1.00 | 16.13 | 1.01 | 16.05 | 1.01 | 15.98 | 1.02 | 15.65 | 1.02 | DB: Dry Bulb Temperature (°F) \quad WB: Wet Bulb Temperature (°F) \quad TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA181A (KNSLA181A / KUSXA181A) Table 36: KSSLA181A (KNSLA181A / KUSXA181A) Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|--------|-------|------|-------|------| | 0E DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 6.79 | 1.04 | 6.10 | 1.07 | 6.19 | 1.11 | 6.14 | 1.12 | 6.11 | 1.13 | 5.81 | 1.17 | | -4 | -4.4 | 10.68 | 1.08 | 10.44 | 1.12 | 10.13 | 1.15 | 9.97 | 1.17 | 9.84 | 1.19 | 9.48 | 1.22 | | 0 | -0.4 | 11.18 | 1.12 | 10.93 | 1.15 | 10.62 | 1.19 | 10.44 | 1.21 | 10.31 | 1.22 | 9.93 | 1.26 | | 5 | 4.5 | 11.82 | 1.16 | 11.56 | 1.20 | 11.23 | 1.23 | 11.04 | 1.26 | 10.90 | 1.28 | 10.50 | 1.32 | | 10 | 9 | 12.72 | 1.22 | 12.43 | 1.26 | 12.07 | 1.30 | 11.88 | 1.32 | 11.73 | 1.33 | 11.30 | 1.38 | | 17 | 15 | 13.92 | 1.26 | 13.61 | 1.30 | 13.21 | 1.34 | 13.00 | 1.36 | 12.83 | 1.38 | 12.36 | 1.42 | | 20 | 19 | 14.67 | 1.28 | 14.34 | 1.31 | 13.93 | 1.36 | 13.70 | 1.38 | 13.52 | 1.40 | 13.02 | 1.44 | | 25 | 23 | 15.91 | 1.30 | 15.56 | 1.34 | 15.11 | 1.39 | 14.87 | 1.41 | 14.67 | 1.43 | 14.13 | 1.47 | | 30 | 28 | 17.16 | 1.33 | 16.78 | 1.37 | 16.30 | 1.42 | 16.03 | 1.44 | 15.82 | 1.46 | 15.24 | 1.51 | | 35 | 32 | 18.41 | 1.36 | 18.00 | 1.40 | 17.48 | 1.45 | 17.20 | 1.47 | 16.97 | 1.49 | 16.35 | 1.54 | | 40 | 36 | 19.66 | 1.39 | 19.22 | 1.43 | 18.67 | 1.48 | 18.37 | 1.50 | 18.12 | 1.52 | 17.46 | 1.57 | | 45 | 41 | 20.91 | 1.41 | 20.44 | 1.46 | 19.86 | 1.51 | 19.53 | 1.53 | 19.27 | 1.55 | 18.57 | 1.60 | | 47 | 43 | 21.41 | 1.42 | 20.93 | 1.47 | 20.33 | 1.52 | 20.00 | 1.54 | 19.73 | 1.57 | 19.02 | 1.61 | | 50 | 46 | 21.47 | 1.42 | 21.03 | 1.46 | 20.52 | 1.49 | 20.22 | 1.52 | 19.98 | 1.53 | 19.30 | 1.58 | | 55 | 51 | 21.57 | 1.40 | 21.22 | 1.43 | 20.83 | 1.47 | 20.59 | 1.49 | 20.40 | 1.49 | 19.79 | 1.53 | | 60 | 56 | 21.68 | 1.38 | 21.40 | 1.41 | 21.14 | 1.44 | 20.96 | 1.45 | 20.81 | 1.46 | 20.28 | 1.48 | | 63 | 59 | 21.75 | 1.38 | 21.50 | 1.40 | 21.32 | 1.42 | 21.17 | 1.42 | 21.06 | 1.43 | 20.57 | 1.45 | | 68 | 64 | 21.81 | 1.37 | 21.62 | 1.38 | 21.50 | 1.40 | 21.40 | 1.40 | 21.31 | 1.41 | 20.86 | 1.42 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. ### KSSLA241A (KNSLA241A / KUSXA241A) Table 37: KSSLA241A (KNSLA241A / KUSXA241A) Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| (°F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|---------|-------|------|-------|------| | 0E DD | OE MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 9.25 | 1.42 | 8.30 | 1.46 | 8.43 | 1.51 | 8.37 | 1.53 | 8.32 | 1.54 | 7.90 | 1.59 | | -4 | -4.4 | 14.54 | 1.47 | 14.21 | 1.52 | 13.80 | 1.57 | 13.58 | 1.59 | 13.40 | 1.62 | 12.91 | 1.66 | | 0 | -0.4 | 15.23 | 1.52 | 14.89 | 1.57 | 14.46 | 1.62 | 14.22 | 1.64 | 14.04 | 1.67 | 13.52 | 1.72 | | 5 | 4.5 | 16.09 | 1.58 | 15.74 | 1.63 | 15.29 | 1.68 | 15.03 | 1.72 | 14.84 | 1.74 | 14.29 | 1.79 | | 10 | 9 | 17.31 | 1.66 | 16.92 | 1.72 | 16.44 | 1.77 | 16.17 | 1.79 | 15.97 | 1.82 | 15.38 | 1.88 | | 17 | 15 | 18.95 | 1.72 | 18.52 | 1.77 | 17.99 | 1.83 | 17.70 | 1.85 | 17.47 | 1.88 | 16.83 | 1.94 | | 20 | 19 | 19.94 | 1.74 | 19.50 | 1.79 | 18.94 | 1.85 | 18.63 | 1.88 | 18.39 | 1.90 | 17.71 | 1.96 | | 25 | 23 | 21.60 | 1.77 | 21.12 | 1.82 | 20.51 | 1.89 | 20.18 | 1.91 | 19.91 | 1.94 | 19.19 | 2.00 | | 30 | 28 | 23.26 | 1.81 | 22.74 | 1.86 | 22.09 | 1.92 | 21.73 | 1.95 | 21.44 | 1.98 | 20.66 | 2.04 | | 35 | 32 | 24.92 | 1.84 | 24.36 | 1.90 | 23.66 | 1.96 | 23.28 | 1.99 | 22.97 | 2.02 | 22.13 | 2.08 | | 40 | 36 | 26.58 | 1.87 | 25.99 | 1.93 | 25.24 | 2.00 | 24.83 | 2.03 | 24.50 | 2.06 | 23.61 | 2.12 | | 45 | 41 | 28.24 | 1.91 | 27.61 | 1.97 | 26.82 | 2.04 | 26.38 | 2.07 | 26.02 | 2.10 | 25.08 | 2.16 | | 47 | 43 | 28.90 | 1.92 | 28.26 | 1.99 |
27.45 | 2.05 | 27.00 | 2.08 | 26.64 | 2.11 | 25.67 | 2.18 | | 50 | 46 | 28.98 | 1.91 | 28.40 | 1.96 | 27.70 | 2.02 | 27.29 | 2.05 | 26.98 | 2.07 | 26.06 | 2.14 | | 55 | 51 | 29.12 | 1.89 | 28.64 | 1.93 | 28.12 | 1.99 | 27.80 | 2.01 | 27.54 | 2.02 | 26.72 | 2.06 | | 60 | 56 | 29.27 | 1.87 | 28.89 | 1.90 | 28.54 | 1.94 | 28.29 | 1.95 | 28.09 | 1.96 | 27.38 | 2.00 | | 63 | 59 | 29.36 | 1.86 | 29.03 | 1.89 | 28.78 | 1.91 | 28.58 | 1.92 | 28.43 | 1.93 | 27.76 | 1.95 | | 68 | 64 | 29.44 | 1.85 | 29.18 | 1.87 | 29.03 | 1.89 | 28.89 | 1.89 | 28.77 | 1.90 | 28.16 | 1.91 | DB: Dry Bulb Temperature (°F) $\;\;$ WB: Wet Bulb Temperature (°F) $\;\;$ TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. \bigcirc Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA301A (KNSLA301A / KUSXA301A) Table 38: KSSLA301A (KNSLA301A / KUSXA301A) Heating Capacities. | I | oor Air
mp. | | | | | Indoor | Air Tem | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|--------|-------|------|-------|------| | or DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 11.29 | 1.70 | 10.13 | 1.75 | 10.28 | 1.81 | 10.21 | 1.84 | 10.15 | 1.85 | 9.65 | 1.91 | | -4 | -4.4 | 17.74 | 1.76 | 17.34 | 1.82 | 16.84 | 1.88 | 16.57 | 1.91 | 16.35 | 1.94 | 15.76 | 1.98 | | 0 | -0.4 | 18.58 | 1.82 | 18.17 | 1.88 | 17.65 | 1.94 | 17.35 | 1.97 | 17.13 | 2.00 | 16.50 | 2.06 | | 5 | 4.5 | 19.63 | 1.90 | 19.20 | 1.95 | 18.66 | 2.01 | 18.35 | 2.06 | 18.11 | 2.09 | 17.44 | 2.15 | | 10 | 9 | 21.13 | 1.98 | 20.65 | 2.06 | 20.06 | 2.12 | 19.74 | 2.15 | 19.48 | 2.18 | 18.77 | 2.25 | | 17 | 15 | 23.12 | 2.06 | 22.61 | 2.12 | 21.96 | 2.19 | 21.60 | 2.22 | 21.32 | 2.25 | 20.53 | 2.32 | | 20 | 19 | 24.45 | 2.08 | 23.90 | 2.14 | 23.22 | 2.22 | 22.84 | 2.25 | 22.54 | 2.28 | 21.71 | 2.35 | | 25 | 23 | 26.66 | 2.12 | 26.07 | 2.19 | 25.32 | 2.26 | 24.91 | 2.29 | 24.58 | 2.33 | 23.68 | 2.40 | | 30 | 28 | 28.87 | 2.16 | 28.23 | 2.23 | 27.42 | 2.30 | 26.97 | 2.34 | 26.62 | 2.37 | 25.65 | 2.45 | | 35 | 32 | 31.09 | 2.20 | 30.39 | 2.27 | 29.52 | 2.35 | 29.04 | 2.38 | 28.65 | 2.42 | 27.61 | 2.49 | | 40 | 36 | 33.30 | 2.24 | 32.55 | 2.32 | 31.62 | 2.39 | 31.11 | 2.43 | 30.69 | 2.46 | 29.58 | 2.54 | | 45 | 41 | 35.51 | 2.28 | 34.72 | 2.36 | 33.72 | 2.44 | 33.17 | 2.47 | 32.73 | 2.51 | 31.54 | 2.59 | | 47 | 43 | 36.39 | 2.30 | 35.58 | 2.38 | 34.56 | 2.45 | 34.00 | 2.49 | 33.54 | 2.53 | 32.33 | 2.61 | | 50 | 46 | 36.50 | 2.29 | 35.76 | 2.35 | 34.89 | 2.41 | 34.37 | 2.45 | 33.97 | 2.48 | 32.82 | 2.56 | | 55 | 51 | 36.68 | 2.26 | 36.07 | 2.31 | 35.40 | 2.38 | 35.01 | 2.40 | 34.68 | 2.41 | 33.65 | 2.47 | | 60 | 56 | 36.85 | 2.23 | 36.38 | 2.27 | 35.94 | 2.32 | 35.63 | 2.34 | 35.37 | 2.35 | 34.47 | 2.39 | | 63 | 59 | 36.97 | 2.22 | 36.56 | 2.26 | 36.25 | 2.29 | 36.00 | 2.30 | 35.80 | 2.31 | 34.96 | 2.34 | | 68 | 64 | 37.07 | 2.21 | 36.75 | 2.23 | 36.56 | 2.26 | 36.38 | 2.26 | 36.23 | 2.27 | 35.46 | 2.29 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. ### KSSLA361A (KNSLA361A / KUSXA361A) Table 39: KSSLA361A (KNSLA361A / KUSXA361A) Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Temp | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|----------|------------|--------|-------|------|-------|------| | or DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 13.27 | 2.04 | 11.92 | 2.09 | 12.09 | 2.16 | 12.00 | 2.20 | 11.93 | 2.22 | 11.34 | 2.29 | | -4 | -4.4 | 20.86 | 2.11 | 20.39 | 2.18 | 19.80 | 2.25 | 19.48 | 2.29 | 19.22 | 2.32 | 18.53 | 2.38 | | 0 | -0.4 | 21.85 | 2.18 | 21.36 | 2.25 | 20.75 | 2.32 | 20.41 | 2.36 | 20.15 | 2.39 | 19.40 | 2.46 | | 5 | 4.5 | 23.09 | 2.27 | 22.58 | 2.34 | 21.94 | 2.41 | 21.57 | 2.46 | 21.29 | 2.50 | 20.51 | 2.57 | | 10 | 9 | 24.84 | 2.38 | 24.29 | 2.46 | 23.59 | 2.53 | 23.21 | 2.57 | 22.91 | 2.61 | 22.08 | 2.69 | | 17 | 15 | 27.19 | 2.46 | 26.58 | 2.53 | 25.82 | 2.62 | 25.40 | 2.66 | 25.07 | 2.69 | 24.15 | 2.78 | | 20 | 19 | 28.75 | 2.50 | 28.11 | 2.58 | 27.30 | 2.66 | 26.86 | 2.70 | 26.51 | 2.74 | 25.54 | 2.83 | | 25 | 23 | 31.36 | 2.57 | 30.66 | 2.64 | 29.78 | 2.73 | 29.29 | 2.77 | 28.91 | 2.81 | 27.85 | 2.90 | | 30 | 28 | 33.96 | 2.63 | 33.20 | 2.71 | 32.25 | 2.80 | 31.73 | 2.84 | 31.31 | 2.88 | 30.17 | 2.98 | | 35 | 32 | 36.57 | 2.69 | 35.75 | 2.78 | 34.72 | 2.87 | 34.16 | 2.91 | 33.70 | 2.96 | 32.48 | 3.05 | | 40 | 36 | 39.17 | 2.76 | 38.30 | 2.85 | 37.20 | 2.94 | 36.59 | 2.99 | 36.10 | 3.03 | 34.79 | 3.12 | | 45 | 41 | 41.78 | 2.82 | 40.84 | 2.91 | 39.67 | 3.01 | 39.03 | 3.06 | 38.50 | 3.10 | 37.11 | 3.20 | | 47 | 43 | 42.82 | 2.85 | 41.86 | 2.94 | 40.66 | 3.04 | 40.00 | 3.09 | 39.46 | 3.13 | 38.03 | 3.23 | | 50 | 46 | 42.94 | 2.83 | 42.07 | 2.91 | 41.04 | 2.99 | 40.43 | 3.04 | 39.97 | 3.07 | 38.61 | 3.16 | | 55 | 51 | 43.15 | 2.80 | 42.43 | 2.86 | 41.65 | 2.94 | 41.18 | 2.97 | 40.80 | 2.99 | 39.58 | 3.05 | | 60 | 56 | 43.36 | 2.77 | 42.80 | 2.81 | 42.28 | 2.88 | 41.91 | 2.89 | 41.62 | 2.91 | 40.56 | 2.96 | | 63 | 59 | 43.50 | 2.75 | 43.01 | 2.80 | 42.64 | 2.83 | 42.35 | 2.85 | 42.12 | 2.86 | 41.13 | 2.89 | | 68 | 64 | 43.62 | 2.74 | 43.23 | 2.77 | 43.01 | 2.80 | 42.80 | 2.80 | 42.63 | 2.81 | 41.72 | 2.83 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. \bigcirc Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA421A (KNSLB421A / KUSXA422A) Table 40: KSSLA421A (KNSLB421A / KUSXA422A) Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|--------|-------|------|-------|------| | or DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 15.57 | 2.40 | 13.98 | 2.46 | 14.19 | 2.55 | 14.08 | 2.59 | 14.00 | 2.61 | 13.31 | 2.69 | | -4 | -4.4 | 24.47 | 2.48 | 23.92 | 2.57 | 23.23 | 2.65 | 22.86 | 2.69 | 22.55 | 2.73 | 21.74 | 2.80 | | 0 | -0.4 | 25.64 | 2.57 | 25.06 | 2.65 | 24.35 | 2.73 | 23.94 | 2.78 | 23.64 | 2.82 | 22.76 | 2.90 | | 5 | 4.5 | 27.09 | 2.67 | 26.49 | 2.75 | 25.74 | 2.84 | 25.31 | 2.90 | 24.98 | 2.94 | 24.06 | 3.03 | | 10 | 9 | 29.15 | 2.80 | 28.49 | 2.90 | 27.68 | 2.98 | 27.23 | 3.03 | 26.88 | 3.07 | 25.90 | 3.17 | | 17 | 15 | 31.90 | 2.90 | 31.19 | 2.98 | 30.29 | 3.09 | 29.80 | 3.13 | 29.41 | 3.17 | 28.33 | 3.28 | | 20 | 19 | 33.64 | 2.95 | 32.88 | 3.03 | 31.94 | 3.14 | 31.42 | 3.18 | 31.01 | 3.22 | 29.87 | 3.33 | | 25 | 23 | 36.53 | 3.02 | 35.71 | 3.12 | 34.68 | 3.22 | 34.12 | 3.27 | 33.67 | 3.31 | 32.44 | 3.42 | | 30 | 28 | 39.42 | 3.10 | 38.53 | 3.20 | 37.43 | 3.30 | 36.82 | 3.35 | 36.33 | 3.40 | 35.01 | 3.51 | | 35 | 32 | 42.30 | 3.18 | 41.36 | 3.28 | 40.17 | 3.39 | 39.52 | 3.44 | 38.99 | 3.49 | 37.58 | 3.60 | | 40 | 36 | 45.19 | 3.25 | 44.18 | 3.36 | 42.92 | 3.47 | 42.22 | 3.52 | 41.65 | 3.58 | 40.14 | 3.69 | | 45 | 41 | 48.08 | 3.33 | 47.01 | 3.44 | 45.66 | 3.55 | 44.92 | 3.61 | 44.32 | 3.66 | 42.71 | 3.78 | | 47 | 43 | 49.24 | 3.36 | 48.14 | 3.47 | 46.76 | 3.59 | 46.00 | 3.64 | 45.38 | 3.70 | 43.74 | 3.81 | | 50 | 46 | 49.38 | 3.34 | 48.38 | 3.44 | 47.20 | 3.53 | 46.50 | 3.59 | 45.96 | 3.62 | 44.40 | 3.74 | | 55 | 51 | 49.62 | 3.31 | 48.80 | 3.38 | 47.90 | 3.47 | 47.36 | 3.51 | 46.92 | 3.53 | 45.52 | 3.61 | | 60 | 56 | 49.86 | 3.27 | 49.22 | 3.32 | 48.62 | 3.40 | 48.20 | 3.42 | 47.86 | 3.44 | 46.64 | 3.49 | | 63 | 59 | 50.02 | 3.25 | 49.46 | 3.31 | 49.04 | 3.34 | 48.70 | 3.36 | 48.44 | 3.38 | 47.30 | 3.42 | | 68 | 64 | 50.16 | 3.23 | 49.72 | 3.27 | 49.46 | 3.31 | 49.22 | 3.31 | 49.02 | 3.32 | 47.98 | 3.34 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. 0 ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. KSSLA481A (KNSLB481A / KUSXA482A) Table 41: KSSLA481A (KNSLB481A / KUSXA482A) Heating Capacities. | | oor Air
np. | | | | | Indoor | Air Tem | perature (| (°F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|---------|-------|------|-------|------| | or DD | OF MD | 6 | 0
 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 15.89 | 2.53 | 14.26 | 2.60 | 14.47 | 2.68 | 14.37 | 2.73 | 14.28 | 2.75 | 13.58 | 2.84 | | -4 | -4.4 | 24.97 | 2.62 | 24.40 | 2.71 | 23.70 | 2.79 | 23.32 | 2.84 | 23.01 | 2.88 | 22.18 | 2.95 | | 0 | -0.4 | 26.15 | 2.71 | 25.57 | 2.79 | 24.84 | 2.88 | 24.42 | 2.93 | 24.11 | 2.97 | 23.22 | 3.06 | | 5 | 4.5 | 27.63 | 2.82 | 27.03 | 2.90 | 26.26 | 2.99 | 25.82 | 3.06 | 25.49 | 3.10 | 24.55 | 3.19 | | 10 | 9 | 29.73 | 2.95 | 29.07 | 3.06 | 28.23 | 3.15 | 27.78 | 3.19 | 27.42 | 3.23 | 26.42 | 3.34 | | 17 | 15 | 32.54 | 3.06 | 31.82 | 3.15 | 30.90 | 3.26 | 30.40 | 3.30 | 30.00 | 3.34 | 28.90 | 3.45 | | 20 | 19 | 34.64 | 3.10 | 33.87 | 3.19 | 32.89 | 3.30 | 32.36 | 3.35 | 31.94 | 3.39 | 30.77 | 3.50 | | 25 | 23 | 38.14 | 3.17 | 37.29 | 3.26 | 36.21 | 3.37 | 35.63 | 3.42 | 35.16 | 3.47 | 33.87 | 3.58 | | 30 | 28 | 41.63 | 3.24 | 40.70 | 3.34 | 39.53 | 3.45 | 38.89 | 3.50 | 38.38 | 3.55 | 36.98 | 3.66 | | 35 | 32 | 45.13 | 3.30 | 44.12 | 3.41 | 42.86 | 3.52 | 42.16 | 3.57 | 41.60 | 3.63 | 40.09 | 3.74 | | 40 | 36 | 48.63 | 3.37 | 47.54 | 3.48 | 46.18 | 3.60 | 45.43 | 3.65 | 44.82 | 3.71 | 43.19 | 3.82 | | 45 | 41 | 52.12 | 3.44 | 50.96 | 3.55 | 49.50 | 3.67 | 48.69 | 3.73 | 48.04 | 3.78 | 46.30 | 3.90 | | 47 | 43 | 53.52 | 3.47 | 52.33 | 3.58 | 50.83 | 3.70 | 50.00 | 3.76 | 49.33 | 3.82 | 47.54 | 3.93 | | 50 | 46 | 53.67 | 3.45 | 52.59 | 3.54 | 51.30 | 3.64 | 50.54 | 3.70 | 49.96 | 3.74 | 48.26 | 3.85 | | 55 | 51 | 53.93 | 3.41 | 53.04 | 3.49 | 52.07 | 3.58 | 51.48 | 3.62 | 51.00 | 3.64 | 49.48 | 3.72 | | 60 | 56 | 54.20 | 3.37 | 53.50 | 3.43 | 52.85 | 3.51 | 52.39 | 3.53 | 52.02 | 3.54 | 50.70 | 3.60 | | 63 | 59 | 54.37 | 3.35 | 53.76 | 3.41 | 53.30 | 3.45 | 52.93 | 3.47 | 52.65 | 3.49 | 51.41 | 3.53 | | 68 | 64 | 54.52 | 3.33 | 54.04 | 3.37 | 53.76 | 3.41 | 53.50 | 3.41 | 53.28 | 3.43 | 52.15 | 3.45 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. 0 ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. \bigcirc Do not extrapolate. KSSLA121A (KNSLB121A / KUSXA121A) Table 42: KSSLA121A (KNSLB121A / KUSXA121A) Maximum Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|--------|-------|------|-------|------| | or DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 11.79 | 2.03 | 11.52 | 2.11 | 11.19 | 2.17 | 11.00 | 2.21 | 10.86 | 2.24 | 10.46 | 2.30 | | -4 | -4.4 | 13.92 | 2.05 | 13.61 | 2.13 | 13.22 | 2.19 | 13.00 | 2.23 | 12.83 | 2.26 | 12.36 | 2.33 | | 0 | -0.4 | 14.87 | 2.07 | 14.54 | 2.13 | 14.12 | 2.20 | 13.89 | 2.24 | 13.71 | 2.27 | 13.20 | 2.34 | | 5 | 4.5 | 16.06 | 2.08 | 15.70 | 2.14 | 15.25 | 2.22 | 15.00 | 2.25 | 14.80 | 2.29 | 14.26 | 2.36 | | 10 | 9 | 16.64 | 2.14 | 16.27 | 2.20 | 15.80 | 2.27 | 15.54 | 2.32 | 15.34 | 2.35 | 14.77 | 2.42 | | 17 | 15 | 17.44 | 2.22 | 17.06 | 2.29 | 16.57 | 2.36 | 16.30 | 2.40 | 16.08 | 2.44 | 15.50 | 2.51 | | 20 | 19 | 17.79 | 2.21 | 17.40 | 2.29 | 16.89 | 2.36 | 16.62 | 2.40 | 16.40 | 2.43 | 15.80 | 2.50 | | 25 | 23 | 18.36 | 2.21 | 17.95 | 2.28 | 17.44 | 2.35 | 17.15 | 2.39 | 16.93 | 2.43 | 16.31 | 2.50 | | 30 | 28 | 18.93 | 2.21 | 18.51 | 2.28 | 17.98 | 2.35 | 17.69 | 2.39 | 17.45 | 2.43 | 16.81 | 2.50 | | 35 | 32 | 19.50 | 2.20 | 19.07 | 2.28 | 18.52 | 2.35 | 18.22 | 2.39 | 17.98 | 2.42 | 17.32 | 2.49 | | 40 | 36 | 20.07 | 2.20 | 19.62 | 2.27 | 19.06 | 2.35 | 18.75 | 2.38 | 18.51 | 2.42 | 17.83 | 2.49 | | 45 | 41 | 20.65 | 2.20 | 20.18 | 2.27 | 19.60 | 2.34 | 19.29 | 2.38 | 19.03 | 2.42 | 18.33 | 2.48 | | 47 | 43 | 20.87 | 2.20 | 20.41 | 2.27 | 19.82 | 2.34 | 19.50 | 2.38 | 19.24 | 2.42 | 18.54 | 2.48 | | 50 | 46 | 20.93 | 2.18 | 20.51 | 2.24 | 20.00 | 2.31 | 19.71 | 2.34 | 19.48 | 2.37 | 18.83 | 2.43 | | 55 | 51 | 21.04 | 2.16 | 20.68 | 2.22 | 20.31 | 2.26 | 20.08 | 2.29 | 19.89 | 2.31 | 19.29 | 2.36 | | 60 | 56 | 21.14 | 2.13 | 20.87 | 2.18 | 20.61 | 2.22 | 20.43 | 2.23 | 20.29 | 2.24 | 19.77 | 2.28 | | 63 | 59 | 21.20 | 2.12 | 20.97 | 2.15 | 20.79 | 2.19 | 20.64 | 2.20 | 20.53 | 2.21 | 20.05 | 2.23 | | 68 | 64 | 21.26 | 2.11 | 21.07 | 2.13 | 20.97 | 2.16 | 20.87 | 2.16 | 20.78 | 2.17 | 20.34 | 2.19 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA181A (KNSLA181A / KUSXA181A) Table 43: KSSLA181A (KNSLA181A / KUSXA181A) Maximum Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| (°F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|---------|-------|------|-------|------| | 0E DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 18.22 | 2.70 | 17.80 | 2.81 | 17.29 | 2.89 | 17.00 | 2.94 | 16.79 | 2.98 | 16.17 | 3.06 | | -4 | -4.4 | 22.49 | 3.04 | 21.98 | 3.15 | 21.35 | 3.24 | 21.00 | 3.30 | 20.73 | 3.35 | 19.97 | 3.44 | | 0 | -0.4 | 24.39 | 3.19 | 23.84 | 3.30 | 23.16 | 3.40 | 22.78 | 3.46 | 22.48 | 3.51 | 21.66 | 3.62 | | 5 | 4.5 | 26.76 | 3.38 | 26.16 | 3.48 | 25.41 | 3.60 | 25.00 | 3.66 | 24.67 | 3.71 | 23.76 | 3.83 | | 10 | 9 | 27.20 | 3.32 | 26.60 | 3.42 | 25.84 | 3.53 | 25.42 | 3.60 | 25.08 | 3.65 | 24.16 | 3.76 | | 17 | 15 | 27.83 | 3.23 | 27.21 | 3.33 | 26.43 | 3.44 | 26.00 | 3.50 | 25.65 | 3.55 | 24.72 | 3.65 | | 20 | 19 | 27.93 | 3.21 | 27.32 | 3.32 | 26.53 | 3.42 | 26.10 | 3.48 | 25.75 | 3.53 | 24.81 | 3.63 | | 25 | 23 | 28.11 | 3.18 | 27.49 | 3.28 | 26.70 | 3.39 | 26.27 | 3.45 | 25.92 | 3.50 | 24.97 | 3.60 | | 30 | 28 | 28.29 | 3.15 | 27.66 | 3.25 | 26.87 | 3.36 | 26.43 | 3.41 | 26.08 | 3.46 | 25.13 | 3.56 | | 35 | 32 | 28.47 | 3.12 | 27.84 | 3.22 | 27.04 | 3.32 | 26.60 | 3.38 | 26.25 | 3.43 | 25.29 | 3.53 | | 40 | 36 | 28.65 | 3.09 | 28.01 | 3.19 | 27.21 | 3.29 | 26.77 | 3.35 | 26.42 | 3.40 | 25.45 | 3.49 | | 45 | 41 | 28.83 | 3.06 | 28.18 | 3.16 | 27.38 | 3.26 | 26.93 | 3.31 | 26.58 | 3.36 | 25.60 | 3.45 | | 47 | 43 | 28.90 | 3.05 | 28.25 | 3.15 | 27.44 | 3.25 | 27.00 | 3.30 | 26.65 | 3.35 | 25.67 | 3.44 | | 50 | 46 | 28.98 | 3.02 | 28.40 | 3.11 | 27.69 | 3.20 | 27.30 | 3.25 | 26.98 | 3.29 | 26.07 | 3.38 | | 55 | 51 | 29.13 | 3.00 | 28.64 | 3.07 | 28.12 | 3.14 | 27.80 | 3.17 | 27.54 | 3.20 | 26.72 | 3.27 | | 60 | 56 | 29.27 | 2.96 | 28.89 | 3.02 | 28.54 | 3.07 | 28.29 | 3.10 | 28.09 | 3.11 | 27.38 | 3.16 | | 63 | 59 | 29.36 | 2.94 | 29.04 | 2.98 | 28.79 | 3.03 | 28.58 | 3.05 | 28.42 | 3.06 | 27.76 | 3.10 | | 68 | 64 | 29.44 | 2.92 | 29.18 | 2.96 | 29.04 | 3.00 | 28.89 | 3.00 | 28.77 | 3.01 | 28.16 | 3.03 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. \bigcirc Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA241A (KNSLA241A / KUSXA241A) Table 44: KSSLA241A (KNSLA241A / KUSXA241A) Maximum Heating Capacities. | | oor Air
mp. | | | | | Indoor | Air Tem | perature (| °F DB) | | | | | |-------|----------------|-------|------|-------|------|--------|---------|------------|--------|-------|------|-------|------| | 0F DD | OF MD | 6 | 0 | 6 | 4 | 6 | 8 | 7 | 0 | 7 | 2 | 7 | 5 | | °F DB | °F WB | TC | PI | | -13 | -13.4 | 20.36 | 3.22 | 19.90 | 3.34 | 19.32 | 3.44 | 19.00 | 3.50 | 18.76 | 3.55 | 18.08 | 3.64 | | -4 | -4.4 | 23.56 | 3.30 | 23.03 | 3.41 | 22.37 | 3.52 | 22.00 | 3.58 | 21.72 | 3.63 | 20.92 | 3.74 | | 0 | -0.4 | 24.98 | 3.34 | 24.42 | 3.45 | 23.72 | 3.55 | 23.33 | 3.62 | 23.03 | 3.67 | 22.18 | 3.78 | | 5 | 4.5 | 26.76 | 3.38 | 26.16 | 3.48 | 25.41 | 3.60 | 25.00 | 3.66 | 24.67 | 3.71 | 23.76 | 3.83 | | 10 | 9 | 28.10 | 3.47 | 27.47 | 3.58 | 26.68 | 3.70 | 26.25 | 3.76 | 25.90 | 3.82 | 24.95 | 3.93 | | 17 | 15 | 29.97 | 3.60 | 29.31 | 3.72 | 28.46 | 3.83 | 28.00 | 3.90 | 27.63 | 3.96 | 26.62 | 4.07 | | 20 | 19 | 30.82 | 3.65 | 30.14 | 3.76 | 29.27 | 3.88 | 28.80 | 3.95 | 28.42 | 4.01 | 27.38 | 4.12 | | 25 | 23 | 32.25 | 3.72 | 31.54 | 3.84 | 30.63 | 3.96 | 30.13 | 4.03 | 29.73 | 4.09 | 28.65 | 4.21 | | 30 | 28 | 33.68 | 3.80 | 32.93 | 3.92 | 31.98 | 4.05 | 31.47 | 4.12 | 31.05 | 4.18 | 29.91 | 4.30 | | 35 | 32 | 35.11 | 3.88 | 34.33 | 4.00 | 33.34 | 4.13 | 32.80 | 4.20 | 32.37 | 4.26 | 31.18 | 4.38 | | 40 | 36 | 36.54 | 3.95 | 35.72 | 4.08 | 34.69 | 4.22 | 34.13 | 4.28 | 33.69 | 4.35 | 32.45 | 4.47 | | 45 | 41 | 37.97 | 4.03 | 37.11 | 4.16 | 36.05 | 4.30 | 35.47 | 4.37 | 35.00 | 4.43 | 33.72 | 4.55 | | 47 | 43 | 38.54 | 4.06 | 37.67 | 4.20 | 36.59 | 4.33 | 36.00 | 4.40 | 35.53 | 4.47 | 34.22 | 4.59 | | 50 | 46 | 38.64 | 4.03 | 37.87 | 4.15 | 36.93 | 4.26 | 36.39 | 4.33 | 35.97
 4.38 | 34.75 | 4.50 | | 55 | 51 | 38.84 | 3.99 | 38.19 | 4.10 | 37.49 | 4.18 | 37.06 | 4.23 | 36.71 | 4.26 | 35.62 | 4.37 | | 60 | 56 | 39.02 | 3.94 | 38.52 | 4.03 | 38.05 | 4.10 | 37.72 | 4.13 | 37.46 | 4.15 | 36.50 | 4.21 | | 63 | 59 | 39.14 | 3.93 | 38.72 | 3.98 | 38.38 | 4.04 | 38.11 | 4.06 | 37.90 | 4.08 | 37.02 | 4.13 | | 68 | 64 | 39.25 | 3.89 | 38.90 | 3.94 | 38.72 | 3.99 | 38.52 | 3.99 | 38.35 | 4.01 | 37.55 | 4.04 | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA301A (KNSLA301A / KUSXA301A) Table 45: KSSLA301A (KNSLA301A / KUSXA301A) Maximum Heating Capacities. | | oor Air
mp. | | Indoor Air Temperature (°F DB) | | | | | | | | | | | | | | | |-------|----------------|-------|--------------------------------|-------|------|-------|------|-------|------|-------|------|-------|------|--|--|--|--| | or DD | OF MD | 6 | 0 | 64 | | 68 | | 70 | | 72 | | 75 | | | | | | | °F DB | °F WB | TC | PI | | | | | | -13 | -13.4 | 27.86 | 4.16 | 27.23 | 4.32 | 26.44 | 4.45 | 26.00 | 4.52 | 25.67 | 4.59 | 24.73 | 4.71 | | | | | | -4 | -4.4 | 31.59 | 4.31 | 30.88 | 4.46 | 29.99 | 4.60 | 29.50 | 4.68 | 29.12 | 4.75 | 28.05 | 4.88 | | | | | | 0 | -0.4 | 33.25 | 4.38 | 32.51 | 4.52 | 31.57 | 4.67 | 31.06 | 4.75 | 30.65 | 4.82 | 29.53 | 4.96 | | | | | | 5 | 4.5 | 35.33 | 4.47 | 34.54 | 4.60 | 33.54 | 4.75 | 33.00 | 4.84 | 32.57 | 4.90 | 31.37 | 5.05 | | | | | | 10 | 9 | 36.66 | 4.14 | 35.85 | 4.27 | 34.81 | 4.41 | 34.25 | 4.49 | 33.80 | 4.55 | 32.56 | 4.69 | | | | | | 17 | 15 | 38.53 | 3.69 | 37.68 | 3.81 | 36.59 | 3.93 | 36.00 | 4.00 | 35.52 | 4.06 | 34.22 | 4.18 | | | | | | 20 | 19 | 39.04 | 3.68 | 38.18 | 3.80 | 37.08 | 3.92 | 36.48 | 3.99 | 35.99 | 4.05 | 34.68 | 4.17 | | | | | | 25 | 23 | 39.90 | 3.67 | 39.02 | 3.79 | 37.89 | 3.91 | 37.28 | 3.97 | 36.79 | 4.03 | 35.44 | 4.15 | | | | | | 30 | 28 | 40.76 | 3.65 | 39.85 | 3.77 | 38.71 | 3.89 | 38.08 | 3.96 | 37.58 | 4.02 | 36.20 | 4.13 | | | | | | 35 | 32 | 41.62 | 3.64 | 40.69 | 3.76 | 39.52 | 3.88 | 38.88 | 3.94 | 38.37 | 4.00 | 36.96 | 4.11 | | | | | | 40 | 36 | 42.47 | 3.62 | 41.52 | 3.74 | 40.33 | 3.86 | 39.68 | 3.92 | 39.16 | 3.98 | 37.72 | 4.09 | | | | | | 45 | 41 | 43.33 | 3.61 | 42.36 | 3.73 | 41.15 | 3.85 | 40.48 | 3.91 | 39.95 | 3.97 | 38.48 | 4.07 | | | | | | 47 | 43 | 43.67 | 3.60 | 42.69 | 3.72 | 41.47 | 3.84 | 40.80 | 3.90 | 40.27 | 3.96 | 38.79 | 4.07 | | | | | | 50 | 46 | 43.80 | 3.57 | 42.92 | 3.68 | 41.85 | 3.78 | 41.25 | 3.84 | 40.77 | 3.89 | 39.39 | 3.99 | | | | | | 55 | 51 | 44.02 | 3.54 | 43.28 | 3.63 | 42.49 | 3.71 | 42.01 | 3.75 | 41.61 | 3.78 | 40.37 | 3.87 | | | | | | 60 | 56 | 44.23 | 3.50 | 43.66 | 3.57 | 43.12 | 3.63 | 42.75 | 3.66 | 42.45 | 3.68 | 41.37 | 3.74 | | | | | | 63 | 59 | 44.36 | 3.48 | 43.88 | 3.53 | 43.50 | 3.59 | 43.19 | 3.60 | 42.95 | 3.62 | 41.95 | 3.66 | | | | | | 68 | 64 | 44.48 | 3.45 | 44.09 | 3.50 | 43.88 | 3.54 | 43.66 | 3.54 | 43.47 | 3.56 | 42.56 | 3.59 | | | | | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA361A (KNSLA361A / KUSXA361A) Table 46: KSSLA361A (KNSLA361A / KUSXA361A) Maximum Heating Capacities. | Outdoor Air
Temp. | | Indoor Air Temperature (°F DB) | | | | | | | | | | | | | | |----------------------|-------|--------------------------------|------|-------|------|-------|------|-------|------|-------|------|-------|------|--|--| | or DD | OF MD | 6 | 0 | 6 | 64 | | 68 | | 70 | | 2 | 75 | | | | | °F DB | °F WB | TC | PI | | | | -13 | -13.4 | 31.07 | 4.93 | 30.37 | 5.13 | 29.49 | 5.27 | 29.00 | 5.36 | 28.64 | 5.44 | 27.59 | 5.59 | | | | -4 | -4.4 | 33.20 | 4.70 | 32.45 | 4.86 | 31.52 | 5.01 | 31.00 | 5.10 | 30.60 | 5.17 | 29.48 | 5.32 | | | | 0 | -0.4 | 34.14 | 4.60 | 33.38 | 4.75 | 32.42 | 4.90 | 31.89 | 4.98 | 31.48 | 5.05 | 30.32 | 5.20 | | | | 5 | 4.5 | 35.33 | 4.47 | 34.54 | 4.60 | 33.54 | 4.75 | 33.00 | 4.84 | 32.57 | 4.90 | 31.37 | 5.05 | | | | 10 | 9 | 38.00 | 4.45 | 37.16 | 4.59 | 36.08 | 4.74 | 35.50 | 4.82 | 35.03 | 4.89 | 33.75 | 5.04 | | | | 17 | 15 | 41.74 | 4.43 | 40.82 | 4.57 | 39.64 | 4.72 | 39.00 | 4.80 | 38.48 | 4.87 | 37.08 | 5.01 | | | | 20 | 19 | 42.17 | 4.37 | 41.24 | 4.51 | 40.05 | 4.65 | 39.40 | 4.73 | 38.88 | 4.80 | 37.46 | 4.94 | | | | 25 | 23 | 42.88 | 4.26 | 41.93 | 4.40 | 40.73 | 4.53 | 40.07 | 4.61 | 39.54 | 4.68 | 38.09 | 4.82 | | | | 30 | 28 | 43.60 | 4.15 | 42.63 | 4.29 | 41.40 | 4.42 | 40.73 | 4.50 | 40.19 | 4.56 | 38.72 | 4.69 | | | | 35 | 32 | 44.31 | 4.04 | 43.33 | 4.18 | 42.08 | 4.31 | 41.40 | 4.38 | 40.85 | 4.45 | 39.36 | 4.57 | | | | 40 | 36 | 45.03 | 3.94 | 44.02 | 4.07 | 42.76 | 4.20 | 42.07 | 4.26 | 41.51 | 4.33 | 39.99 | 4.45 | | | | 45 | 41 | 45.74 | 3.83 | 44.72 | 3.95 | 43.44 | 4.08 | 42.73 | 4.15 | 42.17 | 4.21 | 40.62 | 4.32 | | | | 47 | 43 | 46.03 | 3.78 | 45.00 | 3.91 | 43.71 | 4.04 | 43.00 | 4.10 | 42.44 | 4.16 | 40.88 | 4.27 | | | | 50 | 46 | 46.16 | 3.75 | 45.23 | 3.86 | 44.11 | 3.97 | 43.47 | 4.04 | 42.96 | 4.08 | 41.51 | 4.19 | | | | 55 | 51 | 46.39 | 3.72 | 45.61 | 3.82 | 44.78 | 3.90 | 44.27 | 3.94 | 43.85 | 3.97 | 42.55 | 4.07 | | | | 60 | 56 | 46.61 | 3.67 | 46.01 | 3.75 | 45.45 | 3.82 | 45.05 | 3.85 | 44.74 | 3.86 | 43.60 | 3.93 | | | | 63 | 59 | 46.76 | 3.66 | 46.25 | 3.71 | 45.85 | 3.77 | 45.52 | 3.78 | 45.27 | 3.80 | 44.22 | 3.85 | | | | 68 | 64 | 46.88 | 3.63 | 46.47 | 3.67 | 46.25 | 3.72 | 46.01 | 3.72 | 45.81 | 3.74 | 44.85 | 3.77 | | | DB: Dry Bulb Temperature (°F) $\;\;$ WB: Wet Bulb Temperature (°F) $\;\;$ TC: Total Capacity (kBtu/h) PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. ⁰ ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. KSSLA421A (KNSLB421A / KUSXA422A) Table 47: KSSLA421A (KNSLB421A / KUSXA422A) Maximum Heating Capacities. | Outdoor Air
Temp. | | | Indoor Air Temperature (°F DB) | | | | | | | | | | | | | | | |----------------------|-------|-------|--------------------------------|-------|------|-------|------|-------|------|-------|------|-------|------|--|--|--|--| | or DD | OF MD | 6 | 0 | 64 | | 6 | 68 | | 70 | | 72 | | 5 | | | | | | °F DB | °F WB | TC | PI | | | | | | -13 | -13.4 | 36.43 | 6.12 | 35.61 | 6.36 | 34.58 | 6.54 | 34.00 | 6.66 | 33.57 | 6.76 | 32.35 | 6.94 | | | | | | -4 | -4.4 | 42.83 | 6.17 | 41.88 | 6.39 | 40.67 | 6.58 | 40.00 | 6.70 | 39.49 | 6.80 | 38.04 | 6.99 | | | | | | 0 | -0.4 | 45.68 | 6.20 | 44.66 | 6.40 | 43.38 | 6.60 | 42.67 | 6.72 | 42.11 | 6.81 | 40.56 | 7.02 | | | | | | 5 | 4.5 | 49.24 | 6.22 | 48.14 | 6.41 | 46.76 | 6.62 | 46.00 | 6.74 | 45.40 | 6.83 | 43.73 | 7.05 | | | | | | 10 | 9 | 51.91 | 6.09 | 50.76 | 6.28 | 49.30 | 6.48 | 48.50 | 6.60 | 47.86 | 6.69 | 46.10 | 6.89 | | | | | | 17 | 15 | 55.65 | 5.91 | 54.43 | 6.10 | 52.86 | 6.29 | 52.00 | 6.40 | 51.31 | 6.49 | 49.43 | 6.68 | | | | | | 20 | 19 | 56.51 | 5.85 | 55.26 | 6.04 | 53.67 | 6.23 | 52.80 | 6.34 | 52.10 | 6.43 | 50.19 | 6.62 | | | | | | 25 | 23 | 57.94 | 5.76 | 56.66 | 5.95 | 55.02 | 6.13 | 54.13 | 6.24 | 53.42 | 6.33 | 51.46 | 6.51 | | | | | | 30 | 28 | 59.37 | 5.67 | 58.05 | 5.85 | 56.38 | 6.04 | 55.47 | 6.14 | 54.73 | 6.23 | 52.73 | 6.41 | | | | | | 35 | 32 | 60.80 | 5.58 | 59.44 | 5.76 | 57.73 | 5.94 | 56.80 | 6.04 | 56.05 | 6.13 | 54.00 | 6.30 | | | | | | 40 | 36 | 62.23 | 5.48 | 60.83 | 5.66 | 59.09 | 5.85 | 58.13 | 5.94 | 57.37 | 6.03 | 55.26 | 6.19 | | | | | | 45 | 41 | 63.66 | 5.39 | 62.23 | 5.57 | 60.45 | 5.75 | 59.47 | 5.84 | 58.69 | 5.93 | 56.53 | 6.09 | | | | | | 47 | 43 | 64.23 | 5.35 | 62.78 | 5.53 | 60.99 | 5.71 | 60.00 | 5.80 | 59.22 | 5.89 | 57.04 | 6.05 | | | | | | 50 | 46 | 64.41 | 5.31 | 63.11 | 5.47 | 61.54 | 5.62 | 60.66 | 5.71 | 59.95 | 5.78 | 57.92 | 5.93 | | | | | | 55 | 51 | 64.73 | 5.26 | 63.65 | 5.40 | 62.48 | 5.51 | 61.77 | 5.58 | 61.19 | 5.62 | 59.37 | 5.76 | | | | | | 60 | 56 | 65.04 | 5.20 | 64.20 | 5.31 | 63.42 | 5.40 | 62.86 | 5.44 | 62.43 | 5.47 | 60.84 | 5.55 | | | | | | 63 | 59 | 65.24 | 5.18 | 64.53 | 5.24 | 63.97 | 5.33 | 63.52 | 5.35 | 63.16 | 5.38 | 61.70 | 5.44 | | | | | | 68 | 64 | 65.42 | 5.13 | 64.84 | 5.20 | 64.53 | 5.26 | 64.20 | 5.26 | 63.92 | 5.29 | 62.58 | 5.33 | | | | | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. PI: Power Input (kW) (includes compressor,indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ⁰ ft. level difference
between outdoor and indoor units. KSSLA481A (KNSLB481A / KUSXA482A) Table 48: KSSLA481A (KNSLB481A / KUSXA482A) Maximum Heating Capacities. | | oor Air
mp. | | Indoor Air Temperature (°F DB) | | | | | | | | | | | | | | |-------|----------------|-------|--------------------------------|-------|------|-------|------|-------|------|-------|------|-------|------|--|--|--| | or DD | °F WB | 6 | 0 | 64 | | 68 | | 70 | | 72 | | 75 | | | | | | °F DB | L MR | TC | PI | | | | | -13 | -13.4 | 38.57 | 6.12 | 37.70 | 6.36 | 36.61 | 6.54 | 36.00 | 6.66 | 35.55 | 6.76 | 34.25 | 6.94 | | | | | -4 | -4.4 | 43.91 | 6.17 | 42.92 | 6.39 | 41.69 | 6.58 | 41.00 | 6.70 | 40.47 | 6.80 | 38.99 | 6.99 | | | | | 0 | -0.4 | 46.28 | 6.20 | 45.24 | 6.40 | 43.94 | 6.60 | 43.22 | 6.72 | 42.66 | 6.81 | 41.09 | 7.02 | | | | | 5 | 4.5 | 49.24 | 6.22 | 48.14 | 6.41 | 46.76 | 6.62 | 46.00 | 6.74 | 45.40 | 6.83 | 43.73 | 7.05 | | | | | 10 | 9 | 52.80 | 6.17 | 51.63 | 6.36 | 50.15 | 6.57 | 49.33 | 6.68 | 48.68 | 6.78 | 46.90 | 6.98 | | | | | 17 | 15 | 57.79 | 6.09 | 56.52 | 6.29 | 54.89 | 6.48 | 54.00 | 6.60 | 53.28 | 6.70 | 51.34 | 6.89 | | | | | 20 | 19 | 58.76 | 6.07 | 57.46 | 6.26 | 55.80 | 6.46 | 54.90 | 6.57 | 54.17 | 6.67 | 52.19 | 6.86 | | | | | 25 | 23 | 60.36 | 6.02 | 59.03 | 6.21 | 57.33 | 6.41 | 56.40 | 6.52 | 55.65 | 6.62 | 53.62 | 6.81 | | | | | 30 | 28 | 61.97 | 5.97 | 60.60 | 6.17 | 58.85 | 6.36 | 57.90 | 6.47 | 57.13 | 6.57 | 55.04 | 6.75 | | | | | 35 | 32 | 63.58 | 5.93 | 62.16 | 6.12 | 60.38 | 6.32 | 59.40 | 6.42 | 58.62 | 6.52 | 56.47 | 6.70 | | | | | 40 | 36 | 65.19 | 5.88 | 63.73 | 6.07 | 61.90 | 6.27 | 60.90 | 6.37 | 60.10 | 6.47 | 57.89 | 6.64 | | | | | 45 | 41 | 66.80 | 5.83 | 65.30 | 6.03 | 63.43 | 6.22 | 62.40 | 6.32 | 61.58 | 6.42 | 59.32 | 6.59 | | | | | 47 | 43 | 67.44 | 5.82 | 65.92 | 6.01 | 64.04 | 6.20 | 63.00 | 6.30 | 62.18 | 6.40 | 59.89 | 6.57 | | | | | 50 | 46 | 67.63 | 5.77 | 66.27 | 5.94 | 64.62 | 6.11 | 63.69 | 6.20 | 62.95 | 6.28 | 60.82 | 6.45 | | | | | 55 | 51 | 67.97 | 5.72 | 66.83 | 5.86 | 65.61 | 5.99 | 64.86 | 6.06 | 64.25 | 6.11 | 62.34 | 6.25 | | | | | 60 | 56 | 68.29 | 5.65 | 67.41 | 5.77 | 66.59 | 5.86 | 66.00 | 5.91 | 65.55 | 5.94 | 63.88 | 6.03 | | | | | 63 | 59 | 68.50 | 5.62 | 67.76 | 5.69 | 67.17 | 5.79 | 66.69 | 5.82 | 66.32 | 5.84 | 64.78 | 5.91 | | | | | 68 | 64 | 68.69 | 5.57 | 68.08 | 5.65 | 67.76 | 5.72 | 67.41 | 5.72 | 67.12 | 5.74 | 65.71 | 5.79 | | | | DB: Dry Bulb Temperature (°F) WB: Wet Bulb Temperature (°F) TC: Total Capacity (kBtu/h) Capacity as rated: 0 ft. above sea level with 25 ft. of refrigerant piping. 0 ft. level difference between outdoor and indoor units. Grey shading indicates reference data. When operating at this temperature, these values can be different if the system is not running consistently. PI: Power Input (kW) (includes compressor, indoor fan motor and outdoor fan motor) ^{1.} All capacities are net, evaporator fan motor heat is deducted. ^{2.} Direct interpolation is permissible. O Do not extrapolate. ### CORRECTION FACTORS ### **Cooling / Heating Correction Factors** For single zone systems, calculate the equivalent length of the liquid line from the outdoor unit to the indoor unit. Also, determine the elevation difference of the indoor unit above or below the outdoor unit. Find corresponding cooling or heating capacity correction factors as shown below. Multiply the correction factors by the cooling or heating capacity obtained from the capacity table using design conditions. The resultant is the NET cooling or heating capacity. ### **Refrigerant Line Length Derates** For air-cooled systems, a capacity correction factor will have to be applied to account for the length of the system's refrigerant pipe. Rate of change in capacity due to increased piping lengths is shown below. Table 49: R32 Single Zone Multi-Position AHU with LGRED° System Cooling and Heating Capacity Coefficient Factors. | Pipii | ng Length (ft.) | 24.6 | 32.8 | 49.2 | 65.6 | 98.4 | 131.2 | 164.0 | 196.9 | 229.7 | 246 | |--------------------------------|--------------------------|------|------|------|------|------|-------|-------|-------|-------|------| | Cooling Capacity | Coefficient Factor | | | | | | | | | | | | | KSSLA121A (12,000 Btu/h) | 100 | 100 | 100 | 99.3 | - | - | - | - | - | - | | | KSSLA181A (18,000 Btu/h) | 100 | 100 | 99 | 98.1 | 96.1 | 94.3 | 92.1 | - | - | - | | | KSSLA241A (24,000 Btu/h) | 100 | 100 | 99 | 98.1 | 96.1 | 94.3 | 92.1 | - | - | - | | Rate of Capacity Change (%) | KSSLA301A (30,000 Btu/h) | 100 | 100 | 99 | 98.1 | 96.1 | 94.3 | 92.1 | - | - | - | | onange (70) | KSSLA361A (36,000 Btu/h) | 100 | 98.8 | 97.5 | 96.3 | 93.8 | 91.3 | 88.8 | 86.3 | 83.8 | 82.5 | | | KSSLA421A (42,000 Btu/h) | 100 | 98.8 | 97.5 | 96.3 | 93.8 | 91.3 | 88.8 | 86.3 | 83.8 | 82.5 | | | KSSLA481A (48,000 Btu/h) | 100 | 98.8 | 97.5 | 96.3 | 93.8 | 91.3 | 88.8 | 86.3 | 83.8 | 82.5 | | Heating Capacity | Coefficient Factor | | | | | | | | | | | | | KSSLA121A (12,000 Btu/h) | 100 | 99.8 | 99.4 | 99 | - | - | - | - | - | - | | | KSSLA181A (18,000 Btu/h) | 100 | 99.8 | 99.4 | 99 | 98.3 | 97.2 | 96.2 | - | - | - | | | KSSLA241A (24,000 Btu/h) | 100 | 99.8 | 99.4 | 99 | 98.3 | 97.2 | 96.2 | - | - | - | | Rate of Capacity
Change (%) | KSSLA301A (30,000 Btu/h) | 100 | 99.7 | 99.2 | 98.7 | 97.7 | 96.6 | 95.6 | - | - | - | | Change (70) | KSSLA361A (36,000 Btu/h) | 100 | 99.7 | 98.4 | 97 | 96 | 94.9 | 93.9 | 92.9 | 91.8 | 91.3 | | | KSSLA421A (42,000 Btu/h) | 100 | 99.7 | 98.4 | 97 | 96 | 94.9 | 93.9 | 92.9 | 91.8 | 91.3 | | | KSSLA481A (48,000 Btu/h) | 100 | 99.7 | 98.4 | 97 | 96 | 94.9 | 93.9 | 92.9 | 91.8 | 91.3 | ### **Equivalent Piping Length for Piping Components** Table 50: Equivalent Piping Length for Elbows. | Component | | Size (Inches) | | | | | | | | | | | | | |-------------|-----|---------------|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------| | Elbow (ft.) | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | 7/8 | 1 | 1-1/8 | 1-1/4 | 1-3/8 | 1-1/2 | 1-5/8 | 1-3/4 | 2-1/8 | | | 0.5 | 0.6 | 0.7 | 0.8 | 1.2 | 1.3 | 1.5 | 1.6 | 1.8 | 2.0 | 2.1 | 2.3 | 2.5 | 2.8 | ### Altitude Correction Factor The impact of air density must be considered on systems installed at a significant altitude above sea level, therefore, locally accepted altitude correction factors must be applied. # CORRECTION FACTORS / CHECK SELECTION LGRED° ### **Defrost Correction Factor for Heating Operation** The outdoor unit heating capacity will need to be adjusted for frost accumulation on air-cooled systems. If design day conditions are below the dewpoint of the surrounding air, frost will not be a problem and no correction factor is needed. In certain weather conditions, however, frost will form and accumulate on the air-cooled outdoor unit coil and impact the coils ability to transfer heat. If significant frost accumulates on the outdoor unit coil, a defrost algorithm will start automatically. The timing between defrost periods is determined by the system's ability to achieve a target head pressure value. Capacity and AHRI ratings tables do not factor in capacity reduction when frost has accumulated on the condenser coil, nor during defrost operation. Integrated heating capacity values can be obtained using the formula: ### $A = B \times C$ Where: A = Integrated Heating Capacity. B = Value found in the Capacity Table. C = Correction Factor for Frost Accumulation Factor (from table at right). Table 51: Outdoor Unit Frost Accumulation Factor (Heating)1. | Entering DB (°F) | 19.4 | 23.0 | 26.6 | 32.0 | 37.4 | 41.0 | 44.6 | |------------------|------|------|------|------|------|------|------| | Derate Factor | 0.98 | 0.95 | 0.93 | 0.86 | 0.93 | 0.96 | 1.0 | ¹At 85% outdoor air relative humidity. The frost accumulation factor does not account for effects of snow accumulation restricting airflow through the outdoor unit coil. ### **NOTICE** There will be a temporary reduction in capacity when frost / ice accumulates on the outside surface of the outdoor unit heat exchanger. The level of capacity reduction depends on a number of factors, for example, outdoor temperature (°F DB), relative humidity (RH), and the amount of frost present. ### Check the Indoor and Outdoor Unit Selection(s) Compare the corrected cooling and heating capacities to the load calculations. Is each capacity sufficient for the zone it serves? For each indoor unit, the corrected capacity must be at least equal to the total of the cooling design load (plus ventilation load, if applicable) for the space(s) served by the indoor unit. For each indoor unit, the corrected capacity also must be at least equal to the total of the heating design load (plus ventilation load, if applicable) for the space(s) and / or thermal zones served by the indoor unit. The outdoor unit selected must be large enough to offset the total cooling load for all spaces it serves (account for ventilation air cooling load if the ventilation air has not been pretreated to room neutral conditions). The outdoor unit must also be large enough to offset the total heating load for all spaces it serves. If the corrected heating capacity ratio exceeds 100%, reselect the equipment, or change the system design by moving some of the load to another system. ### **System Sizing Check Formulas** 1. Outdoor Unit Rated Capacity. Q_{odu(rated)} (From capacity tables). 2. Outdoor Unit Capacity at Ti, To Temperature. Q_{odu(Ti, To)} (From capacity tables). 3. Outdoor Unit Capacity Coefficient Factor. $$F_{(Ti, To)} = Q_{odu(Ti, To)} / Q_{odu(rated)}$$ # 4. Piping Correction Factor (From Capacity Coefficient Factor Tables). $\mathbf{F}_{\text{(length)}}$ for each piping length 5. Individual Indoor Unit Combination Capacity. $$Q_{idu (combi)} = Q_{odu(rated)} \times Q_{idu(rated)} / Q_{idu(rated-total)}$$ 6. Individual Indoor Unit Actual Capacity. $$Q_{idu (actual)} = Q_{odu (combi)} \times F_{(Ti, To)} \times F_{(length, altitude)}$$ ### **Conclusions and Recommendations** -
Understand the design safety factors. - Reference load calculations for actual cooling and heating capacities (applies in 99% of applications consider total load when latent load is greater than 30%). - · Verify that the sensible load of the zone is satisfied. - Use caution when sizing to meet listed capacity specifications for the scheduled manufacturer's equipment. If further system design assistance is needed, or you have a unique application you would like to discuss, contact an LG sales rep. # APPLICATION GUIDELINES Placement / Clearance Considerations for Indoor Units on page 72 Placement / Clearance Considerations for Outdoor Units on page 74 Installing Outdoor Units Indoors on page 80 # PLACEMENT / CLEARANCE CONSIDERATIONSLGRED° **Indoor Units** ### Selecting the Best Location for the Indoor Unit ### **NOTICE** Follow recommended best practices when choosing an indoor location for the single zone indoor unit. ### Dos Select a location for installing the indoor units that will meet the following conditions: - · Place the unit where air circulation will not be blocked. - Locate the indoor unit in a location that is level, with enough strength to bear the weight of the indoor unit(s), and where it can be easily connected to the outdoor unit. - Place the unit where drainage can be obtained easily and to minimize the length of the condensate drain piping; include space for drainage to ensure condensate flows properly out of the unit when it is in cooling mode. - Include enough space around the indoor unit so that it is accessible for maintenance and service purposes. Include enough space to be able to clean the filter. - Place the unit in a location where electrical noise / electromagnetic waves will not impact operation. Maintain proper distances between the indoor units and electric wires, audio and visual appliances, breaker / circuit panels, etc. - Place the unit where operating sound from the unit will not disturb occupants. - Confirm that there is enough space for and between the indoor unit and any mounting hardware. ### **○** Do Nots - · No obstacles to air circulation around the unit; keep proper distances from ceilings, doorways, floor, walls, etc. - The unit should not be installed near a heat or steam source, or where considerable amounts of oil, iron powder, or flour are used. (These materials may generate condensate, cause a reduction in heat exchanger efficiency, or the drain to malfunction. If this is a potential problem, install a ventilation fan large enough to vent out these materials.) - Avoid installing the unit near high-frequency generators or near any equipment that generates an electromagnetic field (minimum 3-1/3 feet away). Figure 27: Clearances Requirements for Multi-Position AHUs. ## LGRED PLACEMENT / CLEARANCE CONSIDERATIONS **Indoor Units** ## **WARNING** The unit must not be installed where oil, sulfuric acid and flammable or corrosive gases are generated, vented into, or stored. There is risk of fire, explosion, and physical injury or death. #### **NOTICE** Indoor units (IDUs) must not be placed in an environment where the IDUs will be exposed to harmful volatile organic compounds (VOCs) or in environments where there is improper air make up or supply or inadequate ventilation. If there are concerns about VOCs in the environment where the IDUs are installed, proper air make up or supply and / or adequate ventilation should be provided. Additionally, in buildings where IDUs will be exposed to VOCs consider a factory-applied epoxy coating to the fan coils for each IDU. If the unit is installed near a body of water, certain components are at risk of being corroded. Appropriate anti-corrosion methods should be taken for the unit and all components. The unit will be damaged, will malfunction, and / or will not operate as designed if installed in any of the conditions listed. #### Installing in an Area Exposed to Unconditioned Air In some installation applications, areas (floors, walls) in some rooms will be exposed to unconditioned air (room will be above or next to an unheated garage or storeroom). To countermeasure: - Verify that carpet is or will be installed (carpet will increase the temperature by three degrees). - Add insulation between the floor joists. - Install radiant heat or another type of heating system to the floor. # Include enough distance Install a ventilation fan with sufficient capacity Heat or steam source Figure 28: Installing Near a Heat or Steam Source. #### Installing in an Area with High Humidity Levels If the environment is prone to humidity levels of 80% or more (near the ocean, lakes, etc.) or where steam could collect in the plenum: - Install additional insulation to the indoor unit (glass wool insulation >13/32 inches thick). - Install additional insulation to the refrigerant piping (insulation >13/16 inches thick). - Seal all gaps between the indoor unit and the ceiling tiles (make the area air tight) so that humidity does not transfer from the plenum to the conditioned space. Also, add a ceiling grille for ventilation. ## PLACEMENT / CLEARANCE CONSIDERATIONSLGRED° ## **Outdoor Units** ## Selecting the Best Location for the Outdoor Unit - On not install the unit in an area where combustible gas will generate, flow, stagnate, or leak. These conditions can cause a fire, resulting in bodily injury or death. - O Do not install the unit in a location where acidic solution and spray (sulfur) are often used as it can cause bodily injury or death. - O Do not use the unit in environments where oil, steam, or sulfuric gas are present as it can cause bodily injury or death. ## **AWARNING** When deciding on a location to place the outdoor unit, be sure to choose an area where run-off from defrost will not accumulate and freeze on sidewalks or driveways, which will create unsafe conditions. Properly install and insulate any drain hoses to prevent the hose from freezing, cracking, leaking, and causing unsafe conditions from frozen condensate. Install a fence to prevent pests from crawling into the unit or unauthorized individuals from accessing it. Pests and unauthorized individuals can damage internal components which can cause a fire, electric shock, physical injury or death. Follow the placement guidelines set forth in "Clearance Requirements". Select a location for installing the outdoor unit that will meet the following conditions: #### Dos - Where there is enough strength to bear the weight of the unit. - A location that allows for optimum air flow and is easily accessible for inspection, maintenance, and service. - Where piping between the outdoor unit and indoor unit is within allowable limits. - Include space for drainage to ensure condensate flows properly out of the unit when it is in heating mode. O Avoid placing the outdoor unit in a low-lying area where water could accumulate. - If the outdoor unit is installed in a highly humid environment (near an ocean, lake, etc.), ensure that the site is well-ventilated and has a lot of natural light (Example: Install on a rooftop). ## O Do Nots - Where it will be subjected to direct thermal radiation from other heat sources, or an area that would expose the outdoor unit to heat or steam like discharge from boiler stacks, chimneys, steam relief ports, other air conditioning units, kitchen vents, plumbing vents, and other sources of extreme temperatures. - Where high-frequency electrical noise / electromagnetic waves will affect operation. - Where operating sound from the unit will disturb inhabitants of surrounding buildings. - Where the unit will be exposed to direct, strong winds. - Where the discharge of one outdoor unit will blow into the inlet side of an adjacent unit (when installing multiple outdoor units). #### NOTICE The indoor unit may take longer to provide heat, or heating performance will be reduced in winter if the outdoor unit is installed: - 1. In a narrow, shady location. - 2. Near a location that has a lot of ground moisture. - 3. In a highly humid environment. - 4. In an area in which condensate does not drain properly. ## **Outdoor Unit Condensate Drain Piping** Outdoor unit requires condensate drain piping. Condensate drain pipe is constructed with materials approved by local code. See section on outdoor unit placement. ## LGREDPLACEMENT / CLEARANCE CONSIDERATIONS **Outdoor Units** ## Planning for Snow and Ice To ensure the outdoor unit operates properly, certain measures are required in locations where there is a possibility of heavy snowfall or severe windchill or cold: - 1. Prepare for severe winter wind chills and heavy snowfall, even in areas of the country where these are unusual phenomena. - 2. Position the outdoor unit so that its airflow fans are not buried by direct, heavy snowfall. If snow piles up and blocks the airflow, the system will malfunction. - 3. Remove any snow that has accumulated four (4) inches or more on the top of the outdoor unit. - 4. In climates that will experience significant snow buildup, mount the outdoor unit on a raised, field-provided platform or stand. The raised support platform must be high enough to allow the unit to remain above possible snow drifts, and must be higher than the maximum anticipated snowfall for the location. - 5. Design the mounting base to prevent snow accumulation on the platform in front or back of the unit frame. - 6. Provide a field fabricated snow protection hood to keep snow and ice and/or drifting snow from accumulating on the coil surfaces. - 7. To prevent snow and heavy rain from entering the outdoor unit, install the condenser air inlets and outlets facing away from direct winds. - 8. Consider tie-down requirements in case of high winds or where required by local codes. #### **A**CAUTION When deciding on a location to place the outdoor unit, be sure to choose an area where run-off from defrost will not accumulate and freeze on side-walks or driveways, which will create unsafe conditions. #### **NOTICE** Choose an area
where run-off from defrost mode will not accumulate and freeze on sidewalks or driveways. Properly install and insulate any drain hoses to prevent the hose from freezing, cracking, leaking, and damaging the outdoor unit. ## Tie-Downs, Lightning Protection, and Wind Protection #### **Tie-Downs** - The strength of the roof must be checked before installing the outdoor units. - The strength of the outdoor unit frames is adequate to be used with field-provided wind restraint tie-downs. - If the installation site is prone to high winds or earthquakes, when installing on the wall or roof, securely anchor the mounting base using a field-provided tie-down configuration approved by a local professional engineer. - The overall tie-down configuration must be approved by a local professional engineer. #### **NOTICE** Always refer to local code when using a wind restraint system. ## **Lightning Protection** • To protect the outdoor unit from lightning, it must be placed within the specified lightning safety zone. Table 52: Safety Zone Specifications. | Building Height (feet) | 66 | 98 | 148 | 197 | |------------------------|----|----|-----|-----| | Protection Angle (°) | 55 | 45 | 35 | 25 | - Power cable and communication cable must be installed five (5) feet away from lightning rod. - A high-resistance ground system must be included to protect against induced lightning or indirect strike. Figure 29: Lightning Protection Diagram (Outdoor Unit Appearances Differ According to Model). ## **NOTICE** If the building does not include lightning protection, the outdoor unit will be damaged from a lightning strike. Inform the customer of this possibility in advance. ## PLACEMENT / CLEARANCE CONSIDERATIONSLGRED° ## **Outdoor Units** ## **Oceanside Applications** #### Wind Protection If the outdoor unit is placed on a roof, position it with the compressor end (no coil surface) in the direction of the prevailing wind as shown in the figure at right. In cooler climates, it may be beneficial to position the unit in direct sunlight to assist with defrost operations. If the outdoor unit is not placed on a roof, place it on the leeward side of the building or in a location where the unit will not be exposed to constant wind. If placement exposes the unit to constant wind activity, construct a wind break in front of the unit. Follow the placement guidelines set forth in "Clearance Requirements". Figure 30: Prevailing Wind Direction. Prevailing Winds Figure 31: Leeward Side of the Building. Figure 32: Wind Break. ## Oceanside Application Precautions NOTICE Ocean winds will cause corrosion, particularly on the condenser and evaporator fins, which, in turn could cause product malfunction or inefficient performance. - Avoid installing the outdoor unit where it would be directly exposed to ocean winds. - Install the outdoor unit on the side of the building opposite from direct ocean winds. - · Select a location with good drainage. - Periodically clean dust or salt particles off of the heat exchanger with water. If the outdoor unit must be placed in a location where it would be subjected to direct ocean winds, install a concrete windbreak strong enough to block any winds. Windbreaker height and width must be more than 150% of the outdoor unit, and be installed at least 14 to 28 inches away from the outdoor unit to allow for airflow (depending on the location and outdoor unit size). Figure 33: Oceanside Placement Using a Building as Shield, and Placement Using a Windbreak. #### **NOTICE** Additional anti-corrosion treatment may need to be applied to the outdoor unit at oceanside locations. ## LGREDPLACEMENT / CLEARANCE CONSIDERATIONS **Outdoor Units** ## Minimum Allowable Clearance and Service Access Requirements Proper clearance for the outdoor unit coil is critical for proper unit operation. When installing the outdoor unit, consider service, inlet and outlet and minimum allowable space requirements as illustrated in the diagrams on the following pages. - Include enough space for airflow and for service access. If installing multiple outdoor units, \bigcirc avoid placing the units where the discharge of one unit will blow into the inlet side of an adjacent unit. - If an awning is built over the unit to prevent direct sunlight or rain exposure, make sure that the discharge air of the outdoor unit isn't restricted. - No obstacles to air circulation around the unit; keep proper distances from ceilings, fences, floor, walls, etc. (Install a fence to prevent pests from damaging the unit or unauthorized individuals from accessing it.) ## Minimum Clearance Requirements for Single Fan Outdoor Units Specific clearance requirements in the diagram below are for single fan outdoor units. The figure below shows the overall minimum clearances that must be observed for safe operation and adequate airflow around the outdoor unit. When placing the outdoor unit under an overhang, awning, sunroof or other "roof-like structure", observe the clearance requirements (as shown in Cases 1 and 2) for height in relation to the unit. To have successful service access to the outdoor unit, see the figure below for minimum spacing. When installing multiple outdoor units, see Cases 4 and 5 for correct spacing requirements. #### **NOTICE** If the outdoor unit is installed between standard and minimum clearances, capacity decreases approximately 10%. Figure 34: Single Fan Outdoor Unit Service Access and Allowable Clearances Diagram. Table 53: Single Fan Outdoor Unit Service Access and Allowable Clearances Diagram Legend. | Unit: | Unit: Inch | | В | С | D | E | F | G | |----------------|------------|----|----|----|----|----|----|----| | Case 1 | Standard | 12 | 24 | - | 12 | - | - | - | | Case i | Minimum | 4 | 10 | - | 4 | - | - | 40 | | Case 2 | Standard | - | - | 20 | - | - | - | - | | Case 2 Minimur | Minimum | - | - | 14 | - | - | - | 40 | | Case 3 | Standard | - | - | 20 | 12 | - | - | - | | Case 3 | Minimum | - | - | 14 | 4 | - | - | - | | Case 4 | Standard | - | - | - | 12 | 24 | - | - | | Case 4 | Minimum | - | - | - | 4 | 8 | 79 | - | | Casa F | Standard | - | 24 | - | 12 | - | - | - | | Case 5 | Minimum | _ | 10 | _ | 4 | _ | _ | _ | ## PLACEMENT / CLEARANCE CONSIDERATIONSLGRED° ## **Outdoor Units** #### Minimum Clearance Requirements for Dual Fan Outdoor Units Figures below and on the next page illustrate clearance requirements for various installation scenarios for dual fan outdoor units. Use the hot isle / cold isle approach when placing multiple units in close proximity to each other. Outdoor unit fans draw air from the back of the unit and discharges out the front. Place units back to back and face to face. #### **NOTICE** - Installation clearances must comply with local building codes. - All figures not to scale. - Never place multiple units facing back to front or front to back as shown immediately below here or high and low system pressure problems will occur. Figure 35: Improper Outdoor Unit Placement. Airflow Airflow Figure 36: Proper Outdoor Unit Placement and Clearances When There Are Obstacles on the Suction Side. Single Unit—High Rear Wall Single Unit-High Rear Wall with High Side Walls Single Unit—High Rear Wall with **Building Overhang** Side by Side—High Rear and Side Walls Single Unit—High Rear and Side Walls with Building Overhang Side by Side—High Rear and Side Walls with Building Overhang Figure 37: Proper Outdoor Unit Placement and Clearances When There Are Obstacles on the Discharge Side. Single Unit-High Front Wall with No Side Walls Single Unit—High Front Wall with Building Overhang and No Side Walls Side by Side—High Front Wall with Side by Side—High Front Wall with Building No Side Walls Overhang and No Side or Rear Walls ## LGREDPLACEMENT / CLEARANCE CONSIDERATIONS **Outdoor Units** #### Minimum Clearance Requirements for Dual Fan Outdoor Units, Continued. #### **NOTICE** - Installation clearances must comply with local building codes. - · All figures not to scale. Figure 38: Proper Outdoor Unit Placement and Clearances When There Are Obstacles on the Suction and the Discharge Sides. When Obstacle Height of the Discharge Side is Higher than the Outdoor Unit. Single Unit—High Rear and Front Walls with No Side Walls Single Unit—High Rear and Front Walls with Building Overhang Table 54: H, A, and L Ratio. | | Ls | A (Inches) | | | | |-------|---------------------|------------|--|--|--| | L≤H | 0 < Ls ≤ 1/2 H | 30 | | | | | L≥H | 1/2 H < Ls | 40 | | | | | H < L | Set Stand as: L ≤ H | | | | | #### NOTICE "L" must be lower than "H". If a stand is necessary, it must be made of solid material (not an open frame) to prevent the discharge air from short cycling. Obstacle Height of Discharge Side Is Lower than the Outdoor Unit. Single Unit—High Rear Wall and Low Front Wall with No Side Walls Single Unit—High Rear Wall and Low Front Wall with Building Overhang and No Side Walls Side by Side—High Rear Wall and Low Front Wall with No Side Walls Side by Side—High Rear Wall and Low Front Wall with Building Overhang and No Side Walls Series Installation L≤ H ## **INSTALLING OUTDOOR UNITS INDOORS** ## **Installing Outdoor Units Indoors** Single Zone outdoor units are engineered to be mounted outdoors and include technology designed to minimize the negative effects of winter weather's freezing rain, sleet, and snow. Some building projects, however, necessitate placing the HVAC outdoor units indoors: - · Lack of ground space. - Lack of an appropriate outdoor location that meets system design requirements. - When mounting on the roof is not an option due to a lack of roof space. - Roof warranty will be voided if mechanical equipment is placed on the membrane. - On retrofit projects, a former chiller / boiler / air handler equipment room, mechanical area, or penthouse already exists. - To curtail the potential need for redundant zone heating devices such as wall-fin radiators or duct heaters. - In extremely cold environments where there is a significant
amount of run-time at temperatures well below freezing outside the outdoor unit ambient air temperature range published in this engineering manual. ## **Benefits of Installing Outdoor Units Indoors** - Shelters the outdoor unit from direct exposure to prevailing winds that decrease the heating capability of the outdoor unit. - · Protects equipment from freezing precipitation and / or potential ice build-up that could hinder unit operation. - Maintains coil heat transfer efficiency by reducing the number of and shortening the cycle time for defrost operation. - Easier maintenance and servicing during inclement weather. - When mounted in a fully enclosed space, limiting the ambient air temperature will allow the Single Zone system designer to eliminate oversizing. - The outdoor unit to compensate for loss of capacity at low ambient temperatures. - Will also curtail the need to provide inefficient redundant zone heating devices such as wall-fin radiators and second-stage ancillary heating devices. #### **Design Considerations Include:** - Enclosure types and elements such as louvers (see next page), rain hoods, dampers and controls, heating methods and sizing of heating devices. - Heating strategies. - · Duct design. - · Condensate handling. #### **General Guidelines** - Follow ASHRAE 62.1 design guidelines. - Depending on the project / application, a roof over the outdoor units in combination with a wind break will be all that is necessary. - Consider the potential for snow accumulation near louvers / roof openings. Outside air intakes and discharge ducts / louvers must be engineered to clear anticipated snow accumulation levels by at least one (1) foot. - In situations where operation is anticipated at temperatures lower than the product's minimum operating temperature, ancillary heat must be provided to heat the outdoor unit coils to ensure continuous compressor operation and heating. It may be necessary to use a field-fabricated air guide to prevent discharge air from short-cycling back to the coil inlet. - Consider the direction of prevailing winds and opening placement. If possible, locate inlet openings upwind of discharge openings and other exhaust outlets. - When inlet and outlet openings are placed on the same wall, minimum distance between the two openings must be approximately three (3) feet (minimum distance varies significantly with variations in outlet opening face velocity). - If roof-mounted ventilation openings are used, strategically locate the inlet ventilation opening(s) upwind of the outlet opening(s). - Discharge and supply ductwork must be designed to avoid weather related long periods of water entrainment and the potential for microbial growth. ## **LGRED°** ## **INSTALLING OUTDOOR UNITS INDOORS** Provide a means to drain the condensate generated during heating mode and defrost cycle in addition to rainwater that infiltrates the inlet louver enclosed area. - Install a field-provided drain pan under the outdoor units and provide a path to a nearby floor drain. - If the ambient air temperature is expected to drop below 32°F in the enclosure, heat the bottom surface of the pan, drain line, and floor drain so that the condensate does not freeze before reaching the drain. #### **A**CAUTION When deciding on a location to place the outdoor unit, be sure to choose an area where run-off from defrost will not accumulate and freeze on walkways, which will create unsafe conditions. Allow for ventilation intake and exhaust air based on maximum outdoor unit fan capacity. - Select the size, type and orientation of architectural louvers with adequate "net free area" face velocity to ensure the total external static pressure from the outdoor unit fan does not exceed design limitations (see specification data tables). - No obstructions must be placed in front of the louver that could hamper the free flow (throw) of air. - Roof top openings and / or discharge and supply louvers must be equipped with screens to prevent bird and insect infiltration. #### **NOTICE** For louver recommendations, see below and on the next page. As always, the best solution for each project balances acceptable heating performance (considering local weather conditions), capital costs, life cycle energy consumption, and limitations set forth by local building codes. ## **Louver Recommendations for Outdoor Unit Enclosure** - 1. Outdoor Unit Enclosure: Manual Door Open Type. - 2. Louver Angle: No More Than 15° Horizontally. - Space Between Louvers: More than four (4) inches (Recommend). - 4. Louver Shape: Wing or Plane Type. #### **NOTICE** - Open Rate and Inlet must be taken into consideration when designing the louvered outdoor unit enclosure. - Do not use "S" type louvers. #### **NOTICE** #### If the Louver Open Rate is Too Small - 1. Noise can occur because of the increased air velocity passing through the louver blade. - 2. Noise can occur from louver blade vibrations. - 3. A drop in outdoor unit fan performance (excess static pressure can cause a drop in outdoor unit performance and heat exchanger efficiency). - 4. If the louver open rate is too small or there is insufficient air flow exchange, the air conditioner might stop operating. Figure 39: Louver Recommendations. Table 55: Using "S" Type Louvers. Air flow passing through ____ the louver blade backwards can generate noise. ## INSTALLING OUTDOOR UNITS INDOORS ## Open Rate by Louver Radian Figure 40: Open Rate by Louver Radian Formula. $\theta \le 15$ ho = h * COS θ Total Area (A) = H * W Number of Open Spaces (N) = (Number of Louvers - 1) Effective Area (Af) = ho * W * N Louver Open Rate (n) = Af / A \therefore Af = A * n Effective Cross Section Area Side View Front View ## **Confirming Air Flow Rate / Total Opening Rate** - Example: KUSAB181A (For illustrative purposes only). - Discharge Airflow Rate: 2,119 ft.3/min. - Velocity of Outlet Air: 15.1 ft./s - · Velocity of Inlet Air: 6.5 ft./s - Open Rate = 80% or More Open Rate = Effective Face Area (Af) Total Face Area (A) - · Inlet airflow must match or exceed discharge airflow. - Separate inlet airflow from discharge airflow to prevent recirculation. Figure 41: Example of Installing Outdoor Unit Indoors. #### **Formula** - Total Louver Dimension (Excluding Frame) (A) = 3.9 feet x 6.2 feet = 24.2 ft.² - Area Blocked by Outdoor Unit (Discharge) (B) = 2.6 feet x 2.8 feet = 7.41 ft.2 - Inlet Louver Dimension (A B) = 16.8 ft.2 - Equivalent Inlet Dimension (Open Rate 80%) = 16.8 ft.2 x 0.8 = 13.44 ft.2 - Equivalent Inlet Airflow = 13.44 ft.² x 6.5 ft./s x 60 sec./min. = 5,242 ft.³/min. - Equivalent Inlet Airflow / Discharge Airflow = 5,242 ft.3/min. / 2,119 ft.3/min. = 247% (Within Allowable Limits) # REFRIGERANT PIPING DESIGN Refrigerant Flow Diagrams on page 84 Connection Limitations and System Layout on page 88 Additional Refrigerant Charge on page 89 Refrigerant Piping System Engineering on page 90 Outdoor Unit KUSXA121A ## NOTICE Figure 42: KUSXA121A Outdoor Unit Refrigerant Flow Diagram. Table 56: KUSXA121A Outdoor Unit Thermistor Details. | Description | PCB Connector | |--|---------------| | Inlet Air Temperature Thermistor | CN8_YL | | Discharge Temperature Thermistor | CN6_BK | | Condenser Middle Pipe Temperature Thermistor | CN4_BR | | High Pressure Sensor | CN9_RD | | High Pressure Switch | CN_PRESS | | Electronic Expansion Valve | CN_EEV1_WH | Outdoor Units KUSXA181A, KUSXA241A, KUSXA301A, KUSXA361A ## NOTICE Figure 43: KUSXA181A, KUSXA241A, KUSXA301A, KUSXA361A Unit Refrigerant Flow Diagram. Table 57: KUSXA181A, KUSXA241A, KUSXA301A, KUSXA361A Outdoor Unit Thermistor Details. | Description | PCB Connector | |--|---------------| | Discharge Pipe Temperature Thermistor | CN6_BK | | Suction Pipe Temperature Thermistor | CN5_GN | | Condenser Outlet Pipe Temperature Thermistor | CN7_VI | | Air Temperature Thermistor | CN8_YL | | Condenser Middle Pipe Temperature Thermistor | CN4_BR | | Pressure Sensor | CN9_RD | | Pressure Switch | CN_PRESS_SW | Outdoor Units KUSXA422A, KUSXA482A ## **NOTICE** Figure 44: KUSXA422A, KUSXA482A Unit Refrigerant Flow Diagram. Table 58: KUSXA422A, KUSXA482A Outdoor Unit Thermistor Details. | Description | PCB Connector | |---|-----------------| | Discharge Pipe Temperature Thermistor | CN6_BK | | Suction Pipe Temperature Thermistor | CN5_GN | | Condenser Outlet Pipe Temperature Thermistor | CN7_VI | | Air Temperature Thermistor | CN8_YL | | Condenser Middle Pipe Temperature Thermistor | CN4_BR | | Vapor Injection Inlet Temperature Thermistor | VI_In> CN11_WH | | Vapor Injection Outlet Temperature Thermistor | VI_Out> CN12_BL | | Pressure Sensor | CN9_RD | | Pressure Switch | CN_PRESS_SW | **Indoor Units** ## NOTICE Figure 45: R32 Multi-Position AHU with LGRED°Indoor Units Refrigerant Flow Diagram. Table 59: R32 Multi-Position AHU with LGRED° Indoor Unit Refrigerant Piping and Connection Sizes. | | Pipin | g Size | Connection Port Size | | | | |-----------|---------------------|--------|----------------------|-----------------|--|--| | Model No. | Liquid Vapor (inch) | | Liquid
(inch) | Vapor
(inch) | | | | KNSLB121A | Ø1/4 | Ø3/8 | Ø1/4 | Ø3/8 | | | | KNSLA181A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | | KNSLA241A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | | KNSLA301A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | | KNSLA361A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | | KNSLB421A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | | KNSLB481A | Ø3/8 | Ø5/8 | Ø3/8 | Ø5/8 | | | Table 60: R32 Multi-Position AHU with LGRED° Indoor Units Thermistor Details. | Thermistor | Description | PCB Connector | |------------|-------------------------------------|---------------| | TH1 | Indoor air temperature thermistor | CN_ROOM | | TH2 | Thermistor for pipe in temperature | CN_PIPE_IN | | TH3 | Thermistor for pipe out temperature | CN_PIPE_OUT | # CONNECTION LIMITATIONS / SYSTEM LAYOUT ## NOTICE Various tools are
available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Connection Limitations** Single zone systems consist of one outdoor unit and one indoor unit. One of the most critical elements of a single zone system is the refrigerant piping. If the connection piping is not within allowable limits, there will be reliability, performance, noise, and vibration issues. The table below lists pipe length limits that must be followed in the design of a Single Zone Multi-Position AHU with LGRED° refrigerant pipe system. Refer to the figure for maximum length and elevation of piping. ## **NOTICE** Depending on system and proposed / installed pipe length, it may be required to calculate maximum refrigerant charge to determine if the system complies with applicable regulations / standards. For residential applications, a refrigerant charge less than 4.1 lbs. complies with ASHRAE 15.2 and does not require additional calculation/consideration of maximum refrigerant charge for release in a space. Table 61: R32 Multi-Position AHU with LGRED° Refrigerant Piping System Limitations. | System | Model No. | KSSLA121A | KSSLA181A, KSSLA241A | KSSLA301A, KSSLA361A,
KSSLA421A, KSSLA481A | |---|---|------------|----------------------|---| | Liquid Piping (in.) | Connection / Pipe Size | 1/4 / 1/4 | 3/8 / 3/8 | 3/8 / 3/8 | | Vapor Piping (in.) | Connection / Pipe Size | 3/8 / 3/8 | 5/8 / 5/8 | 5/8 / 5/8 | | Pipe Length
(ELF = Equivalent
Length of pipe in Feet) | Piping Length with No
Additional Refrigerant | 24.6 feet | 24.6 feet | 24.6 feet | | | Longest total equivalent piping length | 164 feet | 164 feet | 246 feet | | | Shortest total equivalent piping length | 16.4 feet | 16.4 feet | 16.4 feet | | | Distance between fittings and indoor units or outdoor units | ≥20 inches | ≥20 inches | ≥20 inches | | Elevation
(All Elevation Limita- | If outdoor unit is above indoor unit | 98.4 feet | 98.4 feet | 98.4 feet | | tions are Measured in
Actual Feet) | If outdoor unit is below indoor unit | 98.4 feet | 98.4 feet | 98.4 feet | | Additional Refrigerant Ne | Additional Refrigerant Needed (oz / ft) | | 0.38 | 0.43 | ## **System Layout** Figure 46: Typical KSSLA121A, KSSLA181A, and KSSLA241A System Layout. Figure 47: Typical KSSLA301A, KSSLA361A, KSSLA421A and KSSLA481A System Layout. ## ADDITIONAL REFRIGERANT CHARGE ## NOTICE Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Additional Refrigerant Charge** Each outdoor unit is factory charged (nameplate charge) for the evaporator as well as a standard 24.6 foot line. Any time a line set is used longer then the standard 24.6 foot line set length, the refrigerant charge has to be adjusted. The charge must be adjusted on 0.38 oz or 0.43 oz of R32 per foot based on how many feet of piping are added. The factory charge accommodates pipe lengths up to the standard length without requiring refrigerant removal. See table below for information on the additional refrigerant charges necessary for longer piping lengths. Refer to the previous page for maximum piping length and elevation. Table 62: R32 Multi-Position AHU with LGRED° Additional Refrigerant by Piping Length (oz.). | System | | | | | | | | Refrig | erant Pi | iping Le | ngth (fe | et) | | | | | | |-----------|------|------|------|-----|------|------|------|--------|----------|----------|----------|------|-------|-------|-------|-------|------| | Model No. | 16.4 | 24.6 | 32.8 | 41 | 49.2 | 65.6 | 82 | 98.4 | 114.8 | 131.2 | 147.6 | 164 | 180.4 | 196.8 | 213.2 | 229.6 | 246 | | KSSLA121A | 0 | 0 | 3.1 | 6.2 | 9.3 | 15.6 | - | - | - | - | - | - | - | - | - | - | - | | KSSLA181A | 0 | 0 | 3.1 | 6.2 | 9.3 | 15.6 | 21.8 | 28.0 | 34.3 | 40.5 | 46.7 | 53.0 | - | - | - | - | - | | KSSLA241A | 0 | 0 | 3.1 | 6.2 | 9.3 | 15.6 | 21.8 | 28.0 | 34.3 | 40.5 | 46.7 | 53.0 | - | - | - | - | - | | KSSLA301A | 0 | 0 | 3.1 | 6.2 | 9.3 | 15.6 | 21.8 | 28.0 | 34.3 | 40.5 | 46.7 | 53.0 | - | - | - | - | - | | KSSLA361A | 0 | 0 | 3.5 | 7.1 | 10.6 | 17.6 | 24.7 | 31.7 | 38.8 | 45.8 | 52.9 | 59.9 | 67.0 | 74.0 | 81.1 | 88.2 | 95.2 | | KSSLA421A | 0 | 0 | 3.5 | 7.1 | 10.6 | 17.6 | 24.7 | 31.7 | 38.8 | 45.8 | 52.9 | 59.9 | 67.0 | 74.0 | 81.1 | 88.2 | 95.2 | | KSSLA481A | 0 | 0 | 3.5 | 7.1 | 10.6 | 17.6 | 24.7 | 31.7 | 38.8 | 45.8 | 52.9 | 59.9 | 67.0 | 74.0 | 81.1 | 88.2 | 95.2 | - · Values are in ounces (oz.). - Capacity is based on standard length; maximum allowance length is based on reliability. - Equivalent pipe length = actual pipe length + number of bends x 0.3. - Calculation: X oz. = ([Refrigerant Piping Length] [(Chargeless Length]) × Additional Refrigerant. #### Example: A 50 foot line set is used: Additional 25.4 feet x 0.38 per foot = Add 9.6 of refrigerant. #### NOTICE If the unit charge is unknown, reclaim, evacuate, and weigh in the correct charge using the unit nameplate (capacity) charge adjusting for line sets longer than "chargeless" feet. This will prevent any interruptions to unit operation and possible damage. #### NOTICE Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Selecting Field-Supplied Copper Piping** **NOTICE**Always follow local codes when selecting and installing copper pipe and piping system components. Approved piping for use with LG Single Zone products will be marked "R32 RATED" along the length of the pipe. Piping wall thickness must meet local code requirements and be approved for a maximum operating pressure of 626 psi. When bending piping, try to keep the number of bends to a minimum, and use the largest radii possible to reduce the equivalent length of installed piping; also, bending radii greater than ten (10) piping diameters can minimize pressure drop. Be sure no traps or sags are present. #### For Single Zone Systems LG prefers the use of ACR copper piping rated at the system working pressure was used. ## **NOTICE** Always properly support the piping as per the instructions in the Pipe Supports section. Table 63: ACR Rated Copper Tubing Material | Туре | Seamless Phosphorous Deoxidized | | | | | |------------------|---------------------------------|--|--|--|--| | Class | UNS C12200 DHP | | | | | | Straight Lengths | H58 Temper | | | | | | Coils | O60 Temper | | | | | Table 64: Piping Tube Thicknesses. | OD (in.) | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | 7/8 | 1-1/8 | 1-3/8 | 1-5/8 | | |---------------------------|-------|---------------------------------|------|------|------|------|-------|-------|-------|--| | Material | | Rigid or Soft ACR Rated for R32 | | | | | | | | | | Min. Bend Radius (in.) | 0.563 | 0.9375 | 1.5 | 2.25 | 3.0 | 3.0 | 3.5 | 4.0 | 4.5 | | | Min. Wall Thickness (in.) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.040 | 0.050 | | Table 65: ACR Copper Tubing Dimensions and Physical Characteristics 1-3. | Nominal Pipe | Actual Outside | Ter | npered (Hard Drav | wn) | Annealed (Soft) | | | | | |------------------------|----------------|------------------------------|--------------------|-----------------------------|------------------------------|--------------------|-----------------------------|--|--| | Outside Diameter (in.) | Diameter (in.) | Nominal Wall Thickness (in.) | Weight (lb. / ft.) | Cubic ft. per
Linear ft. | Nominal Wall Thickness (in.) | Weight (lb. / ft.) | Cubic ft. per
Linear ft. | | | | 1/4 | 0.250 | | | | 0.030 | 0.081 | 0.00020 | | | | 3/8 | 0.375 | 0.030 | 0.126 | 0.00054 | 0.032 | 0.134 | 0.00053 | | | | 1/2 | 0.500 | 0.035 | 0.198 | 0.00101 | 0.032 | 0.182 | 0.00103 | | | | 5/8 | 0.625 | 0.040 | 0.285 | 0.00162 | 0.035 | 0.251 | 0.00168 | | | | 3/4 | 0.750 | 0.042 | 0.362 | 0.00242 | 0.042 | 0.362 | 0.00242 | | | | 7/8 | 0.875 | 0.045 | 0.455 | 0.00336 | 0.045 | 0.455 | 0.00336 | | | | 1-1/8 | 1.125 | 0.050 | 0.655 | 0.00573 | 0.050 | 0.655 | 0.00573 | | | | 1-3/8 | 1.375 | 0.055 | 0.884 | 0.00875 | 0.055 | 0.884 | 0.00875 | | | 1All dimensions provided are in accordance with ASTM B280 – Standard. 2Design pressure = 626 psig. 3The Copper Tube Handbook: Industry Standard Guide for the Design and Installation of Copper Piping Systems; Copper Development Association Inc., Copper Alliance; https://www.copper.org/publications/pub_list/pdf/copper_tube_handbook.pdf. #### NOTICE - Commercially available piping often contains dust and other materials. Always blow it clean with a dry inert gas. - Prevent dust, water or other contaminants from entering the piping during installation. #### NOTICE Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Copper Expansion and Contraction** Under normal operating conditions, the vapor pipe temperature of a Single Zone System can vary as much as 280°F. With this large variance in pipe temperature, the designer must consider pipe expansion and contraction to avoid pipe and fitting fatigue failures. Refrigerant pipe along with the insulation jacket form a cohesive unit that expands and contracts together. During system
operation, thermal heat transfer occurs between the pipe and the surrounding insulation. If the pipe is mounted in free air space, no natural restriction to movement is present if mounting clamps are properly spaced and installed. In extreme cases, the restrictive force of surface friction between insulating jackets could become so great that natural expansion ceases and the pipe is "fixed" in place. In this situation, opposing force caused by change in refrigerant fluid / vapor temperature can lead to pipe/fitting stress failure. The refrigerant pipe support system must be engineered to allow free expansion to occur. When a segment of pipe is mounted between two fixed points, provisions must be provided to allow pipe expansion to naturally occur. The most common method is the inclusion of expansion Loop or U-bends. Each segment of pipe has a natural fixed point where no movement occurs. This fixed point is located at the center point of the segment assuming the entire pipe is insulated in a similar fashion. The natural fixed point of the pipe segment is typically where the expansion Loop or U-bend must be. Linear pipe expansion can be calculated using the following formula: $LE = C \times L \times (T_r - T_r) \times 12$ LE = Anticipated linear tubing expansion (in.) C = Constant (For copper = 9.2 x 10⁻⁶ in./in.°F) L = Length of pipe (ft.) T_R = Refrigerant pipe temperature (°F) T_a = Ambient air temperature (°F) 12 = Inches to feet conversion (12 in./ft.) - 1. From the "Linear Thermal Expansion of Copper Tubing in Inches" Table on the next page, find the row corresponding with the actual length of the straight pipe segment. - Estimate the minimum and maximum temperature of the pipe. In the column showing the minimum pipe temperature, look up the anticipated expansion distance. Do the same for the maximum pipe temperature. - 3. Calculate the difference in the two expansion distance values. The result will be the anticipated change in pipe length. ## General Example: A system is installed and the design shows that there is a 100 foot straight segment of tubing between an indoor unit and the outdoor unit. In heating, this pipe transports hot gas vapor to the indoor units at 120°F. In cooling, the same tube is a suction line returning refrigerant vapor to the outdoor unit at 40°F. Look up the copper tubing expansion at each temperature and calculate the difference. #### **Vapor Line** Transporting Hot Vapor: 100 ft. pipe at $120^{\circ}F = 1.40$ in. Transporting Suction Vapor: 100 ft. pipe at $40^{\circ}F = 0.40$ in. Anticipated Change in Length: 1.40 in. -0.40 in. =1.00 in. #### **Liquid Line** The liquid temperature remains relatively the same temperature; only the direction of flow will reverse. Therefore, no significant change in length of the liquid line is anticipated. When creating an expansion joint, the joint height must be a minimum of two times the joint width. Although different types of expansion arrangements are available, the data for correctly sizing an Expansion Loop is provided in the "Radii of Coiled Expansion Loops and Developed Lengths of Expansion Offsets" Table on the next page. Use soft copper with long radius bends on longer runs or long radius elbows for shorter pipe segments. Using the anticipated linear expansion (LE) distance calculated, look up the Expansion Loop or U-bend minimum design dimensions. If other types of expansion joints are chosen, design per ASTM B-88 Standards. See table on next page for precalculated anticipated expansion for various pipe sizes and lengths of refrigerant tubing. #### To find the anticipated expansion value: - 1. From the table on the next page, find the row corresponding with the actual feet of the straight pipe segment. - 2. Estimate the minimum and maximum temperature of the pipe. - 3. In the column showing the minimum pipe temperature, look up the anticipated expansion distance corresponding to the segment length. Do the same for the maximum pipe temperature. - 4. Calculate the difference in the two expansion distance values. The result will be the change in pipe length. #### **NOTICE** Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. Table 66: Linear Thermal Expansion of Copper Tubing in Inches. | Pipe | Fluid Temperature °F |---------------------|----------------------| | Length ¹ | 35° | 40° | 45° | 50° | 55° | 60° | 65° | 70° | 75° | 80° | 85° | 90° | 95° | 100° | 105° | 110° | 115° | 120° | 125° | 130° | | 10 | 0.04 | 0.04 | 0.05 | 0.06 | 0.06 | 0.07 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.15 | | 20 | 0.08 | 0.08 | 0.10 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.19 | 0.20 | 0.21 | 0.22 | 0.22 | 0.23 | 0.26 | 0.28 | 0.29 | 0.30 | | 30 | 0.12 | 0.12 | 0.15 | 0.18 | 0.20 | 0.21 | 0.23 | 0.24 | 0.26 | 0.27 | 0.29 | 0.30 | 0.32 | 0.33 | 0.32 | 0.35 | 0.39 | 0.42 | 0.44 | 0.45 | | 40 | 0.16 | 0.16 | 0.20 | 0.24 | 0.26 | 0.28 | 0.30 | 0.32 | 0.34 | 0.36 | 0.38 | 0.40 | 0.42 | 0.44 | 0.43 | 0.46 | 0.52 | 0.56 | 0.58 | 0.60 | | 50 | 0.20 | 0.20 | 0.25 | 0.30 | 0.33 | 0.35 | 0.38 | 0.40 | 0.43 | 0.45 | 0.48 | 0.50 | 0.53 | 0.55 | 0.54 | 0.58 | 0.65 | 0.70 | 0.73 | 0.75 | | 60 | 0.24 | 0.24 | 0.30 | 0.36 | 0.39 | 0.42 | 0.45 | 0.48 | 0.51 | 0.54 | 0.57 | 0.60 | 0.63 | 0.66 | 0.65 | 0.69 | 0.78 | 0.84 | 0.87 | 0.90 | | 70 | 0.28 | 0.28 | 0.35 | 0.42 | 0.46 | 0.49 | 0.53 | 0.56 | 0.60 | 0.63 | 0.67 | 0.70 | 0.74 | 0.77 | 0.76 | 0.81 | 0.91 | 0.98 | 1.02 | 1.05 | | 80 | 0.32 | 0.32 | 0.40 | 0.48 | 0.52 | 0.56 | 0.60 | 0.64 | 0.68 | 0.72 | 0.76 | 0.80 | 0.84 | 0.88 | 0.86 | 0.92 | 1.04 | 1.12 | 1.16 | 1.20 | | 90 | 0.36 | 0.36 | 0.45 | 0.54 | 0.59 | 0.63 | 0.68 | 0.72 | 0.77 | 0.81 | 0.86 | 0.90 | 0.95 | 0.99 | 0.97 | 1.04 | 1.17 | 1.26 | 1.31 | 1.35 | | 100 | 0.40 | 0.40 | 0.50 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.08 | 1.15 | 1.30 | 1.40 | 1.45 | 1.50 | | 120 | 0.48 | 0.48 | 0.60 | 0.72 | 0.78 | 0.84 | 0.90 | 0.96 | 1.02 | 1.08 | 1.14 | 1.20 | 1.26 | 1.32 | 1.30 | 1.38 | 1.56 | 1.68 | 1.74 | 1.80 | | 140 | 0.56 | 0.56 | 0.70 | 0.84 | 0.91 | 0.98 | 1.05 | 1.12 | 1.19 | 1.26 | 1.33 | 1.40 | 1.47 | 1.54 | 1.51 | 1.61 | 1.82 | 1.96 | 2.03 | 2.10 | | 160 | 0.64 | 0.64 | 0.80 | 0.96 | 1.04 | 1.12 | 1.20 | 1.28 | 1.36 | 1.44 | 1.52 | 1.60 | 1.68 | 1.76 | 1.73 | 1.84 | 2.08 | 2.24 | 2.32 | 2.40 | | 180 | 0.72 | 0.72 | 0.90 | 1.08 | 1.17 | 1.26 | 1.35 | 1.44 | 1.53 | 1.62 | 1.71 | 1.80 | 1.89 | 1.98 | 1.94 | 2.07 | 2.34 | 2.52 | 2.61 | 2.70 | ^{&#}x27;Pipe length baseline temperature = 0°F. "Expansion of Carbon, Copper and Stainless Steel Pipe," The Engineers' Toolbox, www.engineeringtoolbox.com. Figure 48: Coiled Expansion Loops and Offsets (Plan View) #### **NOTICE** All expansion loops and offsets must be installed in the horizontal plane to prevent the possibility of trapping oil. Loops and offsets in vertical risers must also be installed in a horizontal plane. Table 67: Radii of Coiled Expansion Loops and Developed Lengths of Expansion Offsets. (See The Copper Tube Handbook: Industry Standard Guide for the Design and Installation of Copper Piping Systems; Copper Development Association Inc., Copper Alliance; https://www.copper.org/publications/pub_list/pdf/copper_tube_handbook.pdf for additional information.) | Anticipated Linear
Expansion (LE) (inches) | | Nominal Tube Size (OD) inches | | | | | | | | | | |---|------------------------|-------------------------------|-----|-----|-----|--|--|--|--|--|--| | Ex | (pansion (LE) (inches) | 1/4 | 3/8 | 1/2 | 3/4 | | | | | | | | 1/2 | R¹ | 6 | 7 | 8 | 9 | | | | | | | | | L ² | 38 | 44 | 50 | 59 | | | | | | | | 4 | R¹ | 9 | 10 | 11 | 13 | | | | | | | | l ' | L ² | 54 | 63 | 70 | 83 | | | | | | | | 1-1/2 | R¹ | 11 | 12 | 14 | 16 | | | | | | | | 1-1/2 | L ² | 66 | 77 | 86 | 101 | | | | | | | | 2 | R¹ | 12 | 14 | 16 | 19 | | | | | | | | | L ² | 77 | 89 | 99 | 117 | | | | | | | | 2-1/2 | R¹ | 14 | 16 | 18 | 21 | | | | | | | | 2-1/2 | L ² | 86 | 99 | 111 | 131 | | | | | | | | 3 | R¹ | 15 | 17 | 19 | 23 | | | | | | | | | L ² | 94 | 109 | 122 | 143 | | | | | | | | 3-1/2 | R¹ | 16 | 19 | 21 | 25 | | | | | | | | 3-1/2 | L ² | 102 | 117 | 131 | 155 | | | | | | | | 4 | R¹ | 17 | 20 | 22 | 26 | | | | | | | | 4 | L ² | 109 | 126 | 140 | 166 | | | | | | | ¹R = Centerline Length of Pipe. ²L = Centerline Minimum Radius (inches). ## **NOTICE** Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. Proper system operation depends on the installer using utmost care while assembling the piping system. The following pages are an overview of best practices when installing the refrigerant piping system. #### NOTICE LG Electronics U.S.A., Inc., is not responsible for any piping calculations, refrigerant leaks, degradation of performance, any other potential problems or damages caused by the interconnecting piping, their joint connections, isolation valves, or introduced debris inside the piping system. ## **○ No Pipe Size Substitutions** Use only the pipe size selected by the information in this manual. Using a different size is prohibited and will result in a system malfunction or failure to work at all. ## ○ No In-line Refrigeration Components Components such as oil traps, solenoid valves, filter-driers, sight glasses, tee fittings, and
other after-market accessories are \infty not permitted on the refrigerant piping system between the outdoor units and the indoor units. LG Single Zone systems are provided with redundant systems that make sure oil is properly returned to the compressor. Sight-glasses and solenoid valves will cause vapor to form in the liquid stream. Over time, driers will deteriorate and introduce debris into the system. The designer and installer must verify the refrigerant piping system is free of traps, sagging pipes, sight glasses, filter driers, etc. ## Field-Provided Isolation Ball Valves LG maintains a neutral position on using isolation valves in LG HVAC refrigerant piping systems. LG does not endorse any manufacturer of isolation valves. It is recognized that installing isolation valves will simplify future maintenance requirements, and, if used, considerations must be taken including, but not limited to, the following: - Pressure drops for any component used, including isolation valves, must be known in equivalent pipe length and calculated into the total and segment equivalent piping lengths and compared to product design limitations. - In all cases, materials must be suitable for the application and any applicable codes, including, but not limited to, diameter and wall thickness continuity per ACR standards. Failure to do so will cause significant performance degradation. Proper leak checks must be performed. Using isolation valves does not automatically void any LG product warranty, however, a limited warranty will be voided in whole or part if any field supplied accessory fail in any way that causes product failure. ## **Using Elbows** Field-supplied elbows are allowed if they are long radius and designed for use with R32 refrigerant. The designer and installer, however, must be cautious with the quantity and size of fittings used, and must account for the additional pressure losses in equivalent pipe length calculation for each branch. The equivalent pipe length of each elbow must be added to each pipe segment in the LATS program. ## **Pipe Bends** When bending soft copper, use long radius bends. Refer to the "Radii of Coiled Expansion Loops and Developed Lengths of Expansion Offsets" table on the previous page for minimum radius specifications. ## NOTICE Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Obstacles** When an obstacle, such as an I-beam or concrete T, is in the path of the planned refrigerant pipe run, it is best practice to route the pipe over the obstacle. If adequate space is not available to route the insulated pipe over the obstacle, then route the pipe under the obstacle. In either case, it is imperative the length of the horizontal section of pipe above or below the obstacle be a minimum of three (3) times the longest vertical rise (or fall) at either end of the segment. ## **Pipe Supports** A properly installed pipe system must be adequately supported to avoid pipe sagging. Sagging pipes become oil traps that lead to equipment malfunction. Pipe supports must \bigcirc never touch the pipe wall; supports must be installed outside (around) the primary pipe insulation jacket. Insulate the pipe first because pipe supports must be installed outside (around) the primary pipe insulation jacket. Clevis hangers must be used with shields between the hangers and insulation. Field provided pipe supports must be designed to meet local codes. If allowed by code, use fiber straps or split-ring hangers suspended from the ceiling on all-thread rods (fiber straps or split ring hangers can be used as long as they do not compress the pipe insulation). Place a second layer of insulation over the pipe insulation jacket to prevent chafing and compression of the primary insulation within the confines of the support pipe clamp. A properly installed pipe system will have sufficient supports to avoid pipes from sagging during the life of the system. As necessary, place supports closer for segments where potential sagging could occur. Maximum spacing of pipe supports must meet local codes. If local codes do not specify pipe support spacing, pipe must be supported: - Maximum of five (5) feet on center for straight segments of pipe up to 3/4 inches outside diameter size. - Maximum of six (6) feet on center for pipe up to one (1) inch outside diameter size. - Maximum of eight (8) feet on center for pipe up to two (2) inches outside diameter size. Wherever the pipe changes direction, place a hanger within twelve (12) inches on one side and within twelve (12) to nineteen (19) inches of the bend on the other side. Support piping at indoor unit(s) as shown. Figure 50: Pipe Hanger Details. Figure 51: Typical Pipe Support Location—Change in Pipe Direction. Figure 52: Pipe Support at Indoor Unit. ## NOTICE Use a 4" + long sheet curved sheet metal saddles between hanger bracket and insulation to promote linear expansion/contraction. ## **NOTICE** Various tools are available to assist in properly designing LG R32 split systems. Refer to the "R32 Application Guide"; the "Simple Calculator for Capacity, Refrigerant Charge and ESP"; the "LG Air Conditioner Technical Solutions" (LATS) software program; and the local LG Sales Representative. ## **Pipe Sleeves at Penetrations** LG recommends that all pipe penetrations through walls, floors, and pipes buried underground be properly insulated and routed through an appropriate wall sleeve of sufficient size to prevent compression of refrigerant pipe insulation and free movement of the pipe within the sleeve. Use 4"+ curved sheet metal saddles between the bottom surface of the pipe and the bottom surface of the penetration. Figure 53: Pipe Sleeve Options. - (A) Sleeve - **B** Insulation - (C) Lagging - (D) Caulk - (E) Band - F Water-resistant layer - G Sleeve with edge - **H**Lagging - (I) Mortar or other fire-resistant caulk - (J) Fire-resistant insulation When filling an access hole with mortar, cover the area with steel plate so that the insulation will not fall through. For this area, use fire-resistant materials for both the insulation and cover. (Vinyl cover should not be used.) ## **NOTICE** Diameter of penetrations must be determined by pipe diameter plus the thickness of the insulation. # ELECTRICAL General Guidelines on page 97 Wiring Diagrams on page 98 Power Supply / Power Wiring on page 104 Communication / Connection Cable on page 105 Controllers on page 107 ## **GENERAL GUIDELINES** ## **General Electrical Guidelines** ## **A WARNING** - · Separately wire the high and low voltage lines. There is a risk of electric shock, physical injury, or death. - Use heat-proof electrical wire capable of withstanding temperatures up to 167°F to avoid wiring malfunction and electrical shock, which may cause physical injury or death. - Power wiring and communication cables must be firmly attached to the terminals; connect the wiring so that the wires cannot be easily pulled out. Loose wiring may cause unit malfunction, the wires to burnout or the terminal to overheat and catch fire. There is a risk of electric shock, physical injury or death. - Terminal screws will become loose during transport. Properly tighten the terminal connections during installation or risk electric shock, physical injury, or death. - Use outdoor and waterproof connection cable rated up to 300V for the connection between the indoor and outdoor unit to avoid electrical shock, which may cause physical injury or death. ## **NOTICE** - · Separately wire the high and low voltage lines to avoid damage to units. - On not install power wiring to the outdoor unit and the communication / connection (power) cable to the indoor unit in the same conduit. Use separate conduits. - · Local codes may require field-installed disconnect switches from outdoor unit to indoor unit. - Use heat-proof electrical wire capable of withstanding temperatures up to 167°F to avoid damage to unit. - Always use a circuit breaker or time delay fuse when connecting electrical wiring to the unit. - Power wiring and communication cables must be firmly attached to the terminals. Loose wiring may cause unit malfunction, the wires to burnout or the terminal to overheat and catch fire. There is a risk of equipment malfunction or property damage. - Terminal screws will become loose during transport. Properly tighten the terminal connections during installation or risk equipment malfunction or property damage. There is a risk of equipment malfunction or property damage. - Use outdoor and waterproof connection cable rated up to 300V for the connection between the indoor and outdoor unit to avoid damage to the unit - Comply with local codes while running wire from the indoor unit to the outdoor unit. - O Do not allow wire to touch refrigerant piping, the compressor or any moving parts since it can lead to mechanical failure. ## KUSXA121A Outdoor Units Figure 54: KUSXA121A Outdoor Units Wiring Diagram. ## KUSXA181A, KUSXA241A Outdoor Units Figure 55: KUSXA181A, KUSXA241A Outdoor Units Wiring Diagram. KUSXA301A, KUSXA361A Outdoor Units Figure 56: KUSXA301A, KUSXA361A Outdoor Units Wiring Diagram. ## KUSXA422A, KUSXA482A Outdoor Units Figure 57: KUSXA422A, KUSXA482A Outdoor Units Wiring Diagram. KNSLB121A, KNSLA181A, KNSLA241A Indoor Units (NA Frame) Figure 58: KNSLB121A, KNSLA181A, KNSLA241A Indoor Unit Wiring Diagram. ## **LGRED**° ## WIRING DIAGRAMS KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A Indoor Units (NB Frame) Figure 59: KNSLA301A, KNSLA361A, KNSLB421A, KNSLB481A Indoor Unit Wiring Diagram. ## **POWER SUPPLY / POWER WIRING** ## **Power Supply / Power Wiring** - LG single zone systems operate at 1Ø, 208-230V, 60Hz; confirm power source specifications. - Follow manufacturer's circuit diagrams displayed on the
inside of the control box cover. - It is recommended that a circuit breaker is installed, especially if conditions could become wet or moist. - Include a disconnect in the power wiring system. Add an air gap contact separation of at least 1/8 inch in each active (phase) conductor. - Power wiring to the outdoor unit(s) must be solid or stranded, and must comply with all National Electrical Code (NEC), UL, and local electrical codes. - Power wiring to the outdoor unit(s) must be solid or stranded; and must comply with all National Electrical Code (NEC), UL, and local electrical codes. - Power supply to the outdoor unit must be selected based on NEC and local codes. Maximum allowable voltage fluctuation ±10% or nameplate rated value. Confirm that the electrical capacity is sufficient. A voltage drop will cause the following problems: - Magnetic switch vibration, fuse breaks, or disturbance to the normal function of an overload protection device. - · Compressor will not receive the proper starting current. Figure 60: Circuit Breaker. Figure 62: Power Wiring Example. - Any openings where the field wiring enters the cabinet must be completely sealed. - · Properly ground the outdoor unit and the indoor unit per National Electrical Code (NEC) and local codes. - The indoor unit is powered by the outdoor unit. See the next page for communication / connection (power) cable specifications from the outdoor unit to the indoor unit. - Ground wire must be longer than the common power / communication wires. - · Always match color codes of each wire and follow wiring diagram. Figure 61: General R32 Single Zone System Power / Communications System Schematic (Appearances May Vary) ## **COMMUNICATION / CONNECTION CABLE** ## Communication / Connection (Power) Cable Specifications from Outdoor Unit to Indoor Unit - Power wiring from the single zone outdoor unit to the indoor unimust use a minimum of 14 AWG, three (3) conductor, stranded, shielded or unshielded (if shielded, must be grounded to the chassis of the outdoor unit only), and must comply with applicable local and national codes. - Communication wiring from the single zone outdoor unit to the indoor unit must be a minimum of 18 AWG, two (2) conductor, stranded, shielded or unshielded (if shielded, must be grounded to the chassis of the outdoor unit only), and must comply with applicable local and national codes. - Use of stranded, shielded or unshielded wire is allowed for lengths up to the published maximum pipe length, plus recommended slack at both ends. - Insulation material as required by local code. - Firmly attach the cable; provide slack but secure in a way to prevent external forces from being imparted on the terminal block. - · Wiring must be completed without splices. When the power and communication wire length between the outdoor unit and indoor is GREATER THAN 130 feet: - Use minimum 14 AWG Communication Wiring OR - Separate the power wiring cable AT LEAST two (2) inches away from the communication wiring cable. ## **WARNING** All power wiring and communication cable installation must be performed by trained service providers working in accordance with local, state, and National Electrical Code (NEC) / UL / ETL federal regulations related to electrical equipment and wiring, and following the manufacturer product diagrams, requirements, and instructions in this manual. Failure to do so will lead to electric shock which can cause physical injury or death. Figure 63: R32 Single Zone Outdoor Unit to Indoor Unit Wiring and Communications Cable Diagram. ## Communication Wiring Figure 64: R32 Single Zone Outdoor Unit to Indoor Unit Wiring and Communications Cable Diagram (GREATER THAN 130 feet). ## **COMMUNICATION / CONNECTION CABLE** #### NOTICE - Always verify the communication cable is connected to a communications terminal on the Single Zone unit. Never apply line voltage power to the communication cable connection. If contact is made, the PCBs will be damaged. - The shield of the communications wiring connecting the outdoor unit to the indoor unit must be grounded only to the outdoor unit frame. - Tie the shield of each cable segment together using a wire nut at the indoor unit. Maintain polarity throughout the communication network. - Position the incoming power to the outdoor unit away from the power wiring and communications wiring from the outdoor unit to the indoor unit. - ullet (igcirc Never use a common multiple-core communications cable. - Make sure the communications cable / power wiring from the outdoor unit to the indoor unit and the power wiring to the outdoor unit are separate, otherwise, the outdoor unit operation will be affected by electrical noise and will malfunction or fail. - Use a conduit for the communications cable / power wiring from the outdoor unit to the indoor units. Figure 65: Single Zone Power / Communication System Diagram (Appearances May Vary) ## GRED ## **Controller Options** Optional LG-suppled wired and wireless controllers are available. See "Functions, Controls, Options", or contact an LG representative for more information. #### **Optional Wireless Handheld Remote Controller features:** - · Requires an LG IR receiver - · Display Panel: Displays operation conditions. - On / Off Buttons: Turns system operation on and off. - Mode Button: Selects the operation mode: Cooling, Auto, Dehumidification, Heating, or Fan. - Temp. (Temperature) Up / Down Buttons: Adjusts the desired room temperature in the different modes. - Fan Speed Button (+ / -): Sets desired fan speed. - Reset: Resets / Initializes the handheld remote control settings. #### **NOTICE** Each function will display on the LED for about three (3) seconds when the power is first cycled on. #### **Wired Controller Connections** Optional controllers (see "Functions, Controls, Options", or contact an LG representative for more information) can connect to the indoor unit in one of two different ways. - LG Wired Remote Extension Cable with Molex plug (PZCWRC1; sold separately) that connects to the CN-REMO terminal on the indoor unit PCB. - 2. Field-supplied controller cable that connects to the indoor unit terminal block (must be at least UL2547 or UL1007, and at least FT-6 rated if local electric and building codes require plenum cable usage). Communication cable from indoor unit to remote controller(s) is to be 18 AWG, 3-conductor, twisted, stranded, unshielded. Wiring must comply with all applicable local and national codes. Figure 67: PZCWRC1 LG Wired Remote Extension Cable. #### NOTICE When using field-supplied controller cable, make sure to connect the yellow to yellow (communications wire), red to red (12V power wire), and black to black (ground wire) terminals from the remote controller to the indoor unit terminal blocks. Figure 66: Typical Wireless Handheld Remote Controller. Figure 68: Wired Controller Connection (Example Only). ## Wired Controller Placement Wired controllers include a sensor to detect room temperature. To maintain comfort levels in the conditioned space, the wired controller must be installed in a location away from direct sunlight, high humidity, and where it could be directly exposed to cold air. Controller must be installed four (4) to five (5) feet above the floor where its LED display can be read easily, in an area with good air circulation, and where it can detect an average room temperature. - Drafts or dead spots behind doors and in corners. - · Hot or cold air from ducts. - · Radiant heat from the sun or appliances. - · Concealed pipes and chimneys. - An area where temperatures are uncontrolled, such as an outside wall. Figure 69: Proper Location for the Wired Controller. ## **Assigning the Thermistor for Temperature Detection** Each indoor unit includes a return air thermistor assigned to sense the temperature. If a wired controller is installed, there is a choice of sensing temperature with either the indoor unit return air thermistor or the thermistor in the wired controller. It is also an option to set both thermistors to sense temperature so that indoor unit bases its operation on the first thermistor to reach the designated temperature differential. For applicable indoor units, an optional Remote Temperature Sensor can be used in lieu of the return air thermistor—either alone or in conjunction with a wired controller thermistor as previously described. "The product's full Limited Warranty terms and conditions and arbitration requirements are available at https://www.lghvac.com." LG Electronics, U.S.A., Inc. Air Conditioning Technologies 4300 North Point Parkway Alpharetta, Georgia 30022 www.lghvac.com